diff options
author | Matthias P. Braendli <matthias.braendli@mpb.li> | 2018-12-04 16:45:58 +0100 |
---|---|---|
committer | Matthias P. Braendli <matthias.braendli@mpb.li> | 2018-12-04 16:45:58 +0100 |
commit | 5cf52c74e9eb6bf8a82af4509ff3eb5106f928f9 (patch) | |
tree | a7edc1dfd2b2f4469f4dc4d760fdfa83a25fa710 /python/dpd/src/RX_Agc.py | |
parent | d5cbe10c0e2298b0e40161607a3da158249bdb82 (diff) | |
download | dabmod-5cf52c74e9eb6bf8a82af4509ff3eb5106f928f9.tar.gz dabmod-5cf52c74e9eb6bf8a82af4509ff3eb5106f928f9.tar.bz2 dabmod-5cf52c74e9eb6bf8a82af4509ff3eb5106f928f9.zip |
Rework GUI and DPDCE
Diffstat (limited to 'python/dpd/src/RX_Agc.py')
-rw-r--r-- | python/dpd/src/RX_Agc.py | 166 |
1 files changed, 0 insertions, 166 deletions
diff --git a/python/dpd/src/RX_Agc.py b/python/dpd/src/RX_Agc.py deleted file mode 100644 index f778dee..0000000 --- a/python/dpd/src/RX_Agc.py +++ /dev/null @@ -1,166 +0,0 @@ -# -*- coding: utf-8 -*- -# -# Automatic Gain Control -# -# http://www.opendigitalradio.org -# Licence: The MIT License, see notice at the end of this file - -import datetime -import os -import logging -import time -import numpy as np -import matplotlib -matplotlib.use('agg') -import matplotlib.pyplot as plt - -import src.Adapt as Adapt -import src.Measure as Measure - -class Agc: - """The goal of the automatic gain control is to set the - RX gain to a value at which all received amplitudes can - be detected. This means that the maximum possible amplitude - should be quantized at the highest possible digital value. - - A problem we have to face, is that the estimation of the - maximum amplitude by applying the max() function is very - unstable. This is due to the maximum’s rareness. Therefore - we estimate a far more robust value, such as the median, - and then approximate the maximum amplitude from it. - - Given this, we tune the RX gain in such a way, that the - received signal fulfills our desired property, of having - all amplitudes properly quantized.""" - - def __init__(self, measure, adapt, c): - assert isinstance(measure, Measure.Measure) - assert isinstance(adapt, Adapt.Adapt) - self.measure = measure - self.adapt = adapt - self.min_rxgain = c.RAGC_min_rxgain - self.rxgain = self.min_rxgain - self.peak_to_median = 1./c.RAGC_rx_median_target - - def run(self): - self.adapt.set_rxgain(self.rxgain) - - for i in range(2): - # Measure - txframe_aligned, tx_ts, rxframe_aligned, rx_ts, rx_median= \ - self.measure.get_samples() - - # Estimate Maximum - rx_peak = self.peak_to_median * rx_median - correction_factor = 20*np.log10(1/rx_peak) - self.rxgain = self.rxgain + correction_factor - - assert self.min_rxgain <= self.rxgain, ("Desired RX Gain is {} which is smaller than the minimum of {}".format( - self.rxgain, self.min_rxgain)) - - logging.info("RX Median {:1.4f}, estimated peak {:1.4f}, correction factor {:1.4f}, new RX gain {:1.4f}".format( - rx_median, rx_peak, correction_factor, self.rxgain - )) - - self.adapt.set_rxgain(self.rxgain) - time.sleep(0.5) - - def plot_estimates(self): - """Plots the estimate of for Max, Median, Mean for different - number of samples.""" - if self.c.plot_location is None: - return - - self.adapt.set_rxgain(self.min_rxgain) - time.sleep(1) - - dt = datetime.datetime.now().isoformat() - fig_path = self.c.plot_location + "/" + dt + "_agc.png" - fig, axs = plt.subplots(2, 2, figsize=(3*6,1*6)) - axs = axs.ravel() - - for j in range(5): - txframe_aligned, tx_ts, rxframe_aligned, rx_ts, rx_median =\ - self.measure.get_samples() - - rxframe_aligned_abs = np.abs(rxframe_aligned) - - x = np.arange(100, rxframe_aligned_abs.shape[0], dtype=int) - rx_max_until = [] - rx_median_until = [] - rx_mean_until = [] - for i in x: - rx_max_until.append(np.max(rxframe_aligned_abs[:i])) - rx_median_until.append(np.median(rxframe_aligned_abs[:i])) - rx_mean_until.append(np.mean(rxframe_aligned_abs[:i])) - - axs[0].plot(x, - rx_max_until, - label="Run {}".format(j+1), - color=matplotlib.colors.hsv_to_rgb((1./(j+1.),0.8,0.7)), - linestyle="-", linewidth=0.25) - axs[0].set_xlabel("Samples") - axs[0].set_ylabel("Amplitude") - axs[0].set_title("Estimation for Maximum RX Amplitude") - axs[0].legend() - - axs[1].plot(x, - rx_median_until, - label="Run {}".format(j+1), - color=matplotlib.colors.hsv_to_rgb((1./(j+1.),0.9,0.7)), - linestyle="-", linewidth=0.25) - axs[1].set_xlabel("Samples") - axs[1].set_ylabel("Amplitude") - axs[1].set_title("Estimation for Median RX Amplitude") - axs[1].legend() - ylim_1 = axs[1].get_ylim() - - axs[2].plot(x, - rx_mean_until, - label="Run {}".format(j+1), - color=matplotlib.colors.hsv_to_rgb((1./(j+1.),0.9,0.7)), - linestyle="-", linewidth=0.25) - axs[2].set_xlabel("Samples") - axs[2].set_ylabel("Amplitude") - axs[2].set_title("Estimation for Mean RX Amplitude") - ylim_2 = axs[2].get_ylim() - axs[2].legend() - - axs[1].set_ylim(min(ylim_1[0], ylim_2[0]), - max(ylim_1[1], ylim_2[1])) - - fig.tight_layout() - fig.savefig(fig_path) - - axs[3].hist(rxframe_aligned_abs, bins=60) - axs[3].set_xlabel("Amplitude") - axs[3].set_ylabel("Frequency") - axs[3].set_title("Histogram of Amplitudes") - axs[3].legend() - - fig.tight_layout() - fig.savefig(fig_path) - plt.close(fig) - - -# The MIT License (MIT) -# -# Copyright (c) 2017 Andreas Steger -# -# Permission is hereby granted, free of charge, to any person obtaining a copy -# of this software and associated documentation files (the "Software"), to deal -# in the Software without restriction, including without limitation the rights -# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell -# copies of the Software, and to permit persons to whom the Software is -# furnished to do so, subject to the following conditions: -# -# The above copyright notice and this permission notice shall be included in all -# copies or substantial portions of the Software. -# -# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR -# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, -# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE -# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER -# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, -# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE -# SOFTWARE. |