summaryrefslogtreecommitdiffstats
path: root/python/dpd/Model_AM.py
diff options
context:
space:
mode:
authorMatthias P. Braendli <matthias.braendli@mpb.li>2018-12-19 16:11:58 +0100
committerMatthias P. Braendli <matthias.braendli@mpb.li>2018-12-19 16:12:19 +0100
commitf4ca82137e850e30d31e7008b34800d8b2699e5d (patch)
treeff19ad63f6ddf8a4f62b173c5955b2711646f123 /python/dpd/Model_AM.py
parent9d2c85f7a2a23fcf9ce3c842d86227afed43a153 (diff)
downloaddabmod-f4ca82137e850e30d31e7008b34800d8b2699e5d.tar.gz
dabmod-f4ca82137e850e30d31e7008b34800d8b2699e5d.tar.bz2
dabmod-f4ca82137e850e30d31e7008b34800d8b2699e5d.zip
DPD: Merge Model_PM and _AM into _Poly
Diffstat (limited to 'python/dpd/Model_AM.py')
-rw-r--r--python/dpd/Model_AM.py119
1 files changed, 0 insertions, 119 deletions
diff --git a/python/dpd/Model_AM.py b/python/dpd/Model_AM.py
deleted file mode 100644
index b07a5a5..0000000
--- a/python/dpd/Model_AM.py
+++ /dev/null
@@ -1,119 +0,0 @@
-# -*- coding: utf-8 -*-
-#
-# DPD Computation Engine, model implementation for Amplitude and not Phase
-#
-# http://www.opendigitalradio.org
-# Licence: The MIT License, see notice at the end of this file
-
-import datetime
-import os
-import logging
-import numpy as np
-import matplotlib.pyplot as plt
-
-
-def is_npfloat32(array):
- assert isinstance(array, np.ndarray), type(array)
- assert array.dtype == np.float32, array.dtype
- assert array.flags.contiguous
- assert not any(np.isnan(array))
-
-
-def check_input_get_next_coefs(tx_dpd, rx_received):
- is_npfloat32(tx_dpd)
- is_npfloat32(rx_received)
-
-
-def poly(sig):
- return np.array([sig ** i for i in range(1, 6)]).T
-
-
-def fit_poly(tx_abs, rx_abs):
- return np.linalg.lstsq(poly(rx_abs), tx_abs, rcond=None)[0]
-
-
-def calc_line(coefs, min_amp, max_amp):
- rx_range = np.linspace(min_amp, max_amp)
- tx_est = np.sum(poly(rx_range) * coefs, axis=1)
- return tx_est, rx_range
-
-
-class Model_AM:
- """Calculates new coefficients using the measurement and the previous
- coefficients"""
-
- def __init__(self, c, learning_rate_am=1):
- self.c = c
- self.learning_rate_am = learning_rate_am
- self._plot_data = None
-
- def plot(self, plot_location, title):
- if self._plot_data is not None:
- tx_dpd, rx_received, coefs_am, coefs_am_new = self._plot_data
-
- tx_range, rx_est = calc_line(coefs_am, 0, 0.6)
- tx_range_new, rx_est_new = calc_line(coefs_am_new, 0, 0.6)
-
- sub_rows = 1
- sub_cols = 1
- fig = plt.figure(figsize=(sub_cols * 6, sub_rows / 2. * 6))
- i_sub = 0
-
- i_sub += 1
- ax = plt.subplot(sub_rows, sub_cols, i_sub)
- ax.plot(tx_range, rx_est,
- label="Estimated TX",
- alpha=0.3,
- color="gray")
- ax.plot(tx_range_new, rx_est_new,
- label="New Estimated TX",
- color="red")
- ax.scatter(tx_dpd, rx_received,
- label="Binned Data",
- color="blue",
- s=1)
- ax.set_title("Model_AM {}".format(title))
- ax.set_xlabel("TX Amplitude")
- ax.set_ylabel("RX Amplitude")
- ax.set_xlim(-0.5, 1.5)
- ax.legend(loc=4)
-
- fig.tight_layout()
- fig.savefig(plot_location)
- plt.close(fig)
-
- def get_next_coefs(self, tx_dpd, rx_received, coefs_am):
- """Calculate the next AM/AM coefficients using the extracted
- statistic of TX and RX amplitude"""
- check_input_get_next_coefs(tx_dpd, rx_received)
-
- coefs_am_new = fit_poly(tx_dpd, rx_received)
- coefs_am_new = coefs_am + \
- self.learning_rate_am * (coefs_am_new - coefs_am)
-
- self._plot_data = (tx_dpd, rx_received, coefs_am, coefs_am_new)
-
- return coefs_am_new
-
-# The MIT License (MIT)
-#
-# Copyright (c) 2017 Andreas Steger
-# Copyright (c) 2018 Matthias P. Braendli
-#
-# Permission is hereby granted, free of charge, to any person obtaining a copy
-# of this software and associated documentation files (the "Software"), to deal
-# in the Software without restriction, including without limitation the rights
-# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
-# copies of the Software, and to permit persons to whom the Software is
-# furnished to do so, subject to the following conditions:
-#
-# The above copyright notice and this permission notice shall be included in all
-# copies or substantial portions of the Software.
-#
-# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
-# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
-# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
-# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
-# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
-# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
-# SOFTWARE.