diff options
author | Matthias P. Braendli <matthias.braendli@mpb.li> | 2018-12-19 16:11:58 +0100 |
---|---|---|
committer | Matthias P. Braendli <matthias.braendli@mpb.li> | 2018-12-19 16:12:19 +0100 |
commit | f4ca82137e850e30d31e7008b34800d8b2699e5d (patch) | |
tree | ff19ad63f6ddf8a4f62b173c5955b2711646f123 /python/dpd/Model_AM.py | |
parent | 9d2c85f7a2a23fcf9ce3c842d86227afed43a153 (diff) | |
download | dabmod-f4ca82137e850e30d31e7008b34800d8b2699e5d.tar.gz dabmod-f4ca82137e850e30d31e7008b34800d8b2699e5d.tar.bz2 dabmod-f4ca82137e850e30d31e7008b34800d8b2699e5d.zip |
DPD: Merge Model_PM and _AM into _Poly
Diffstat (limited to 'python/dpd/Model_AM.py')
-rw-r--r-- | python/dpd/Model_AM.py | 119 |
1 files changed, 0 insertions, 119 deletions
diff --git a/python/dpd/Model_AM.py b/python/dpd/Model_AM.py deleted file mode 100644 index b07a5a5..0000000 --- a/python/dpd/Model_AM.py +++ /dev/null @@ -1,119 +0,0 @@ -# -*- coding: utf-8 -*- -# -# DPD Computation Engine, model implementation for Amplitude and not Phase -# -# http://www.opendigitalradio.org -# Licence: The MIT License, see notice at the end of this file - -import datetime -import os -import logging -import numpy as np -import matplotlib.pyplot as plt - - -def is_npfloat32(array): - assert isinstance(array, np.ndarray), type(array) - assert array.dtype == np.float32, array.dtype - assert array.flags.contiguous - assert not any(np.isnan(array)) - - -def check_input_get_next_coefs(tx_dpd, rx_received): - is_npfloat32(tx_dpd) - is_npfloat32(rx_received) - - -def poly(sig): - return np.array([sig ** i for i in range(1, 6)]).T - - -def fit_poly(tx_abs, rx_abs): - return np.linalg.lstsq(poly(rx_abs), tx_abs, rcond=None)[0] - - -def calc_line(coefs, min_amp, max_amp): - rx_range = np.linspace(min_amp, max_amp) - tx_est = np.sum(poly(rx_range) * coefs, axis=1) - return tx_est, rx_range - - -class Model_AM: - """Calculates new coefficients using the measurement and the previous - coefficients""" - - def __init__(self, c, learning_rate_am=1): - self.c = c - self.learning_rate_am = learning_rate_am - self._plot_data = None - - def plot(self, plot_location, title): - if self._plot_data is not None: - tx_dpd, rx_received, coefs_am, coefs_am_new = self._plot_data - - tx_range, rx_est = calc_line(coefs_am, 0, 0.6) - tx_range_new, rx_est_new = calc_line(coefs_am_new, 0, 0.6) - - sub_rows = 1 - sub_cols = 1 - fig = plt.figure(figsize=(sub_cols * 6, sub_rows / 2. * 6)) - i_sub = 0 - - i_sub += 1 - ax = plt.subplot(sub_rows, sub_cols, i_sub) - ax.plot(tx_range, rx_est, - label="Estimated TX", - alpha=0.3, - color="gray") - ax.plot(tx_range_new, rx_est_new, - label="New Estimated TX", - color="red") - ax.scatter(tx_dpd, rx_received, - label="Binned Data", - color="blue", - s=1) - ax.set_title("Model_AM {}".format(title)) - ax.set_xlabel("TX Amplitude") - ax.set_ylabel("RX Amplitude") - ax.set_xlim(-0.5, 1.5) - ax.legend(loc=4) - - fig.tight_layout() - fig.savefig(plot_location) - plt.close(fig) - - def get_next_coefs(self, tx_dpd, rx_received, coefs_am): - """Calculate the next AM/AM coefficients using the extracted - statistic of TX and RX amplitude""" - check_input_get_next_coefs(tx_dpd, rx_received) - - coefs_am_new = fit_poly(tx_dpd, rx_received) - coefs_am_new = coefs_am + \ - self.learning_rate_am * (coefs_am_new - coefs_am) - - self._plot_data = (tx_dpd, rx_received, coefs_am, coefs_am_new) - - return coefs_am_new - -# The MIT License (MIT) -# -# Copyright (c) 2017 Andreas Steger -# Copyright (c) 2018 Matthias P. Braendli -# -# Permission is hereby granted, free of charge, to any person obtaining a copy -# of this software and associated documentation files (the "Software"), to deal -# in the Software without restriction, including without limitation the rights -# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell -# copies of the Software, and to permit persons to whom the Software is -# furnished to do so, subject to the following conditions: -# -# The above copyright notice and this permission notice shall be included in all -# copies or substantial portions of the Software. -# -# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR -# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, -# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE -# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER -# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, -# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE -# SOFTWARE. |