aboutsummaryrefslogtreecommitdiffstats
path: root/python/dpd/Model_AM.py
diff options
context:
space:
mode:
authorMatthias P. Braendli <matthias.braendli@mpb.li>2018-12-04 16:45:58 +0100
committerMatthias P. Braendli <matthias.braendli@mpb.li>2018-12-04 16:45:58 +0100
commit5cf52c74e9eb6bf8a82af4509ff3eb5106f928f9 (patch)
treea7edc1dfd2b2f4469f4dc4d760fdfa83a25fa710 /python/dpd/Model_AM.py
parentd5cbe10c0e2298b0e40161607a3da158249bdb82 (diff)
downloaddabmod-5cf52c74e9eb6bf8a82af4509ff3eb5106f928f9.tar.gz
dabmod-5cf52c74e9eb6bf8a82af4509ff3eb5106f928f9.tar.bz2
dabmod-5cf52c74e9eb6bf8a82af4509ff3eb5106f928f9.zip
Rework GUI and DPDCE
Diffstat (limited to 'python/dpd/Model_AM.py')
-rw-r--r--python/dpd/Model_AM.py122
1 files changed, 122 insertions, 0 deletions
diff --git a/python/dpd/Model_AM.py b/python/dpd/Model_AM.py
new file mode 100644
index 0000000..75b226f
--- /dev/null
+++ b/python/dpd/Model_AM.py
@@ -0,0 +1,122 @@
+# -*- coding: utf-8 -*-
+#
+# DPD Computation Engine, model implementation for Amplitude and not Phase
+#
+# http://www.opendigitalradio.org
+# Licence: The MIT License, see notice at the end of this file
+
+import datetime
+import os
+import logging
+import numpy as np
+import matplotlib.pyplot as plt
+
+
+def is_npfloat32(array):
+ assert isinstance(array, np.ndarray), type(array)
+ assert array.dtype == np.float32, array.dtype
+ assert array.flags.contiguous
+ assert not any(np.isnan(array))
+
+
+def check_input_get_next_coefs(tx_dpd, rx_received):
+ is_npfloat32(tx_dpd)
+ is_npfloat32(rx_received)
+
+
+def poly(sig):
+ return np.array([sig ** i for i in range(1, 6)]).T
+
+
+def fit_poly(tx_abs, rx_abs):
+ return np.linalg.lstsq(poly(rx_abs), tx_abs, rcond=None)[0]
+
+
+def calc_line(coefs, min_amp, max_amp):
+ rx_range = np.linspace(min_amp, max_amp)
+ tx_est = np.sum(poly(rx_range) * coefs, axis=1)
+ return tx_est, rx_range
+
+
+class Model_AM:
+ """Calculates new coefficients using the measurement and the previous
+ coefficients"""
+
+ def __init__(self,
+ c,
+ learning_rate_am=1,
+ plot=False):
+ self.c = c
+
+ self.learning_rate_am = learning_rate_am
+ self.plot = plot
+
+ def _plot(self, tx_dpd, rx_received, coefs_am, coefs_am_new):
+ if self.plot and self.c.plot_location is not None:
+ tx_range, rx_est = calc_line(coefs_am, 0, 0.6)
+ tx_range_new, rx_est_new = calc_line(coefs_am_new, 0, 0.6)
+
+ dt = datetime.datetime.now().isoformat()
+ fig_path = self.c.plot_location + "/" + dt + "_Model_AM.png"
+ sub_rows = 1
+ sub_cols = 1
+ fig = plt.figure(figsize=(sub_cols * 6, sub_rows / 2. * 6))
+ i_sub = 0
+
+ i_sub += 1
+ ax = plt.subplot(sub_rows, sub_cols, i_sub)
+ ax.plot(tx_range, rx_est,
+ label="Estimated TX",
+ alpha=0.3,
+ color="gray")
+ ax.plot(tx_range_new, rx_est_new,
+ label="New Estimated TX",
+ color="red")
+ ax.scatter(tx_dpd, rx_received,
+ label="Binned Data",
+ color="blue",
+ s=1)
+ ax.set_title("Model_AM")
+ ax.set_xlabel("TX Amplitude")
+ ax.set_ylabel("RX Amplitude")
+ ax.set_xlim(-0.5, 1.5)
+ ax.legend(loc=4)
+
+ fig.tight_layout()
+ fig.savefig(fig_path)
+ plt.close(fig)
+
+ def get_next_coefs(self, tx_dpd, rx_received, coefs_am):
+ """Calculate the next AM/AM coefficients using the extracted
+ statistic of TX and RX amplitude"""
+ check_input_get_next_coefs(tx_dpd, rx_received)
+
+ coefs_am_new = fit_poly(tx_dpd, rx_received)
+ coefs_am_new = coefs_am + \
+ self.learning_rate_am * (coefs_am_new - coefs_am)
+
+ self._plot(tx_dpd, rx_received, coefs_am, coefs_am_new)
+
+ return coefs_am_new
+
+# The MIT License (MIT)
+#
+# Copyright (c) 2017 Andreas Steger
+#
+# Permission is hereby granted, free of charge, to any person obtaining a copy
+# of this software and associated documentation files (the "Software"), to deal
+# in the Software without restriction, including without limitation the rights
+# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+# copies of the Software, and to permit persons to whom the Software is
+# furnished to do so, subject to the following conditions:
+#
+# The above copyright notice and this permission notice shall be included in all
+# copies or substantial portions of the Software.
+#
+# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+# SOFTWARE.