summaryrefslogtreecommitdiffstats
path: root/python/dpd/ExtractStatistic.py
diff options
context:
space:
mode:
authorMatthias P. Braendli <matthias.braendli@mpb.li>2018-12-04 16:45:58 +0100
committerMatthias P. Braendli <matthias.braendli@mpb.li>2018-12-04 16:45:58 +0100
commit5cf52c74e9eb6bf8a82af4509ff3eb5106f928f9 (patch)
treea7edc1dfd2b2f4469f4dc4d760fdfa83a25fa710 /python/dpd/ExtractStatistic.py
parentd5cbe10c0e2298b0e40161607a3da158249bdb82 (diff)
downloaddabmod-5cf52c74e9eb6bf8a82af4509ff3eb5106f928f9.tar.gz
dabmod-5cf52c74e9eb6bf8a82af4509ff3eb5106f928f9.tar.bz2
dabmod-5cf52c74e9eb6bf8a82af4509ff3eb5106f928f9.zip
Rework GUI and DPDCE
Diffstat (limited to 'python/dpd/ExtractStatistic.py')
-rw-r--r--python/dpd/ExtractStatistic.py196
1 files changed, 196 insertions, 0 deletions
diff --git a/python/dpd/ExtractStatistic.py b/python/dpd/ExtractStatistic.py
new file mode 100644
index 0000000..639513a
--- /dev/null
+++ b/python/dpd/ExtractStatistic.py
@@ -0,0 +1,196 @@
+# -*- coding: utf-8 -*-
+#
+# DPD Computation Engine,
+# Extract statistic from received TX and RX data to use in Model
+#
+# http://www.opendigitalradio.org
+# Licence: The MIT License, see notice at the end of this file
+
+import numpy as np
+import matplotlib.pyplot as plt
+import datetime
+import os
+import logging
+
+
+def _check_input_extract(tx_dpd, rx_received):
+ # Check data type
+ assert tx_dpd[0].dtype == np.complex64, \
+ "tx_dpd is not complex64 but {}".format(tx_dpd[0].dtype)
+ assert rx_received[0].dtype == np.complex64, \
+ "rx_received is not complex64 but {}".format(rx_received[0].dtype)
+ # Check if signals have same normalization
+ normalization_error = np.abs(np.median(np.abs(tx_dpd)) -
+ np.median(np.abs(rx_received))) / (
+ np.median(np.abs(tx_dpd)) + np.median(np.abs(rx_received)))
+ assert normalization_error < 0.01, "Non normalized signals"
+
+
+def _phase_diff_value_per_bin(phase_diffs_values_lists):
+ phase_list = []
+ for values in phase_diffs_values_lists:
+ mean = np.mean(values) if len(values) > 0 else np.nan
+ phase_list.append(mean)
+ return phase_list
+
+
+class ExtractStatistic:
+ """Calculate a low variance RX value for equally spaced tx values
+ of a predefined range"""
+
+ def __init__(self, c):
+ self.c = c
+
+ # Number of measurements used to extract the statistic
+ self.n_meas = 0
+
+ # Boundaries for the bins
+ self.tx_boundaries = np.linspace(c.ES_start, c.ES_end, c.ES_n_bins + 1)
+ self.n_per_bin = c.ES_n_per_bin
+
+ # List of rx values for each bin
+ self.rx_values_lists = []
+ for i in range(c.ES_n_bins):
+ self.rx_values_lists.append([])
+
+ # List of tx values for each bin
+ self.tx_values_lists = []
+ for i in range(c.ES_n_bins):
+ self.tx_values_lists.append([])
+
+ self.plot = c.ES_plot
+
+ def _plot_and_log(self, tx_values, rx_values, phase_diffs_values, phase_diffs_values_lists):
+ if self.plot and self.c.plot_location is not None:
+ dt = datetime.datetime.now().isoformat()
+ fig_path = self.c.plot_location + "/" + dt + "_ExtractStatistic.png"
+ sub_rows = 3
+ sub_cols = 1
+ fig = plt.figure(figsize=(sub_cols * 6, sub_rows / 2. * 6))
+ i_sub = 0
+
+ i_sub += 1
+ ax = plt.subplot(sub_rows, sub_cols, i_sub)
+ ax.plot(tx_values, rx_values,
+ label="Estimated Values",
+ color="red")
+ for i, tx_value in enumerate(tx_values):
+ rx_values_list = self.rx_values_lists[i]
+ ax.scatter(np.ones(len(rx_values_list)) * tx_value,
+ np.abs(rx_values_list),
+ s=0.1,
+ color="black")
+ ax.set_title("Extracted Statistic")
+ ax.set_xlabel("TX Amplitude")
+ ax.set_ylabel("RX Amplitude")
+ ax.set_ylim(0, 0.8)
+ ax.set_xlim(0, 1.1)
+ ax.legend(loc=4)
+
+ i_sub += 1
+ ax = plt.subplot(sub_rows, sub_cols, i_sub)
+ ax.plot(tx_values, np.rad2deg(phase_diffs_values),
+ label="Estimated Values",
+ color="red")
+ for i, tx_value in enumerate(tx_values):
+ phase_diff = phase_diffs_values_lists[i]
+ ax.scatter(np.ones(len(phase_diff)) * tx_value,
+ np.rad2deg(phase_diff),
+ s=0.1,
+ color="black")
+ ax.set_xlabel("TX Amplitude")
+ ax.set_ylabel("Phase Difference")
+ ax.set_ylim(-60, 60)
+ ax.set_xlim(0, 1.1)
+ ax.legend(loc=4)
+
+ num = []
+ for i, tx_value in enumerate(tx_values):
+ rx_values_list = self.rx_values_lists[i]
+ num.append(len(rx_values_list))
+ i_sub += 1
+ ax = plt.subplot(sub_rows, sub_cols, i_sub)
+ ax.plot(num)
+ ax.set_xlabel("TX Amplitude")
+ ax.set_ylabel("Number of Samples")
+ ax.set_ylim(0, self.n_per_bin * 1.2)
+
+ fig.tight_layout()
+ fig.savefig(fig_path)
+ plt.close(fig)
+
+ def _rx_value_per_bin(self):
+ rx_values = []
+ for values in self.rx_values_lists:
+ mean = np.mean(np.abs(values)) if len(values) > 0 else np.nan
+ rx_values.append(mean)
+ return rx_values
+
+ def _tx_value_per_bin(self):
+ tx_values = []
+ for start, end in zip(self.tx_boundaries, self.tx_boundaries[1:]):
+ tx_values.append(np.mean((start, end)))
+ return tx_values
+
+ def _phase_diff_list_per_bin(self):
+ phase_values_lists = []
+ for tx_list, rx_list in zip(self.tx_values_lists, self.rx_values_lists):
+ phase_diffs = []
+ for tx, rx in zip(tx_list, rx_list):
+ phase_diffs.append(np.angle(rx * tx.conjugate()))
+ phase_values_lists.append(phase_diffs)
+ return phase_values_lists
+
+ def extract(self, tx_dpd, rx):
+ """Extract information from a new measurement and store them
+ in member variables."""
+ _check_input_extract(tx_dpd, rx)
+ self.n_meas += 1
+
+ tx_abs = np.abs(tx_dpd)
+ for i, (tx_start, tx_end) in enumerate(zip(self.tx_boundaries, self.tx_boundaries[1:])):
+ mask = (tx_abs > tx_start) & (tx_abs < tx_end)
+ n_add = max(0, self.n_per_bin - len(self.rx_values_lists[i]))
+ self.rx_values_lists[i] += \
+ list(rx[mask][:n_add])
+ self.tx_values_lists[i] += \
+ list(tx_dpd[mask][:n_add])
+
+ rx_values = self._rx_value_per_bin()
+ tx_values = self._tx_value_per_bin()
+
+ n_per_bin = np.array([len(values) for values in self.rx_values_lists])
+ # Index of first not filled bin, assumes that never all bins are filled
+ idx_end = np.argmin(n_per_bin == self.c.ES_n_per_bin)
+
+ phase_diffs_values_lists = self._phase_diff_list_per_bin()
+ phase_diffs_values = _phase_diff_value_per_bin(phase_diffs_values_lists)
+
+ self._plot_and_log(tx_values, rx_values, phase_diffs_values, phase_diffs_values_lists)
+
+ tx_values_crop = np.array(tx_values, dtype=np.float32)[:idx_end]
+ rx_values_crop = np.array(rx_values, dtype=np.float32)[:idx_end]
+ phase_diffs_values_crop = np.array(phase_diffs_values, dtype=np.float32)[:idx_end]
+ return tx_values_crop, rx_values_crop, phase_diffs_values_crop, n_per_bin
+
+# The MIT License (MIT)
+#
+# Copyright (c) 2017 Andreas Steger
+#
+# Permission is hereby granted, free of charge, to any person obtaining a copy
+# of this software and associated documentation files (the "Software"), to deal
+# in the Software without restriction, including without limitation the rights
+# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+# copies of the Software, and to permit persons to whom the Software is
+# furnished to do so, subject to the following conditions:
+#
+# The above copyright notice and this permission notice shall be included in all
+# copies or substantial portions of the Software.
+#
+# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+# SOFTWARE.