summaryrefslogtreecommitdiffstats
path: root/gui/dpd/Capture.py
diff options
context:
space:
mode:
authorMatthias P. Braendli <matthias.braendli@mpb.li>2018-11-28 11:11:22 +0100
committerMatthias P. Braendli <matthias.braendli@mpb.li>2018-11-28 11:11:22 +0100
commitcfa9461f269e616d6d54658d583b37d215f35a7b (patch)
treebc56977f6479c297521dff9564ba6ecbffe00a52 /gui/dpd/Capture.py
parentee435c029eac59e0399dc3ae765cc74d66b9442e (diff)
downloaddabmod-cfa9461f269e616d6d54658d583b37d215f35a7b.tar.gz
dabmod-cfa9461f269e616d6d54658d583b37d215f35a7b.tar.bz2
dabmod-cfa9461f269e616d6d54658d583b37d215f35a7b.zip
GUI: Add part of calibration routine
Diffstat (limited to 'gui/dpd/Capture.py')
-rw-r--r--gui/dpd/Capture.py51
1 files changed, 29 insertions, 22 deletions
diff --git a/gui/dpd/Capture.py b/gui/dpd/Capture.py
index e2ac63d..4c0e99c 100644
--- a/gui/dpd/Capture.py
+++ b/gui/dpd/Capture.py
@@ -36,6 +36,9 @@ import io
from . import Align as sa
+def correlation_coefficient(sig_tx, sig_rx):
+ return np.corrcoef(sig_tx, sig_rx)[0, 1]
+
def align_samples(sig_tx, sig_rx):
"""
Returns an aligned version of sig_tx and sig_rx by cropping, subsample alignment and
@@ -61,7 +64,7 @@ def align_samples(sig_tx, sig_rx):
# Fine subsample alignment and phase offset
sig_rx = sa.subsample_align(sig_rx, sig_tx)
sig_rx = sa.phase_align(sig_rx, sig_tx)
- return sig_tx, sig_rx
+ return sig_tx, sig_rx, abs(off_meas)
class Capture:
"""Capture samples from ODR-DabMod"""
@@ -76,14 +79,16 @@ class Capture:
# samples to avoid that the polynomial gets overfitted in the low-amplitude
# part, which is less interesting than the high-amplitude part, where
# non-linearities become apparent.
- self.binning_start = 0.0
- self.binning_end = 1.0
self.binning_n_bins = 64 # Number of bins between binning_start and binning_end
self.binning_n_per_bin = 128 # Number of measurements pre bin
- self.target_median = 0.05
- self.median_max = self.target_median * 1.4
- self.median_min = self.target_median / 1.4
+ self.rx_normalisation = 1.0
+
+ self.clear_accumulated()
+
+ def clear_accumulated(self):
+ self.binning_start = 0.0
+ self.binning_end = 1.0
# axis 0: bins
# axis 1: 0=tx, 1=rx
@@ -156,30 +161,32 @@ class Capture:
return txframe, tx_ts, rxframe, rx_ts
- def get_samples(self):
- """Connect to ODR-DabMod, retrieve TX and RX samples, load
- into numpy arrays, and return a tuple
- (txframe_aligned, tx_ts, tx_median, rxframe_aligned, rx_ts, rx_median)
- """
-
+ def calibrate(self):
txframe, tx_ts, rxframe, rx_ts = self.receive_tcp()
# Normalize received signal with sent signal
tx_median = np.median(np.abs(txframe))
+ rx_median = np.median(np.abs(rxframe))
+ self.rx_normalisation = tx_median / rx_median
- if self.median_max < tx_median:
- raise ValueError("TX median {} too high, decrease digital_gain!".format(tx_median))
- elif tx_median < self.median_min:
- raise ValueError("TX median {} too low, increase digital_gain!".format(tx_median))
- else:
- rx_median = np.median(np.abs(rxframe))
- rxframe = rxframe / rx_median * tx_median
+ rxframe = rxframe * self.rx_normalisation
+ txframe_aligned, rxframe_aligned, coarse_offset = align_samples(txframe, rxframe)
- txframe_aligned, rxframe_aligned = align_samples(txframe, rxframe)
+ return tx_ts, tx_median, rx_ts, rx_median, coarse_offset, correlation_coefficient(txframe_aligned, rxframe_aligned)
+
+ def get_samples(self):
+ """Connect to ODR-DabMod, retrieve TX and RX samples, load
+ into numpy arrays, and return a tuple
+ (txframe_aligned, tx_ts, tx_median, rxframe_aligned, rx_ts, rx_median)
+ """
- self._bin_and_accumulate(txframe_aligned, rxframe_aligned)
+ txframe, tx_ts, rxframe, rx_ts = self.receive_tcp()
- return txframe_aligned, tx_ts, tx_median, rxframe_aligned, rx_ts, rx_median
+ # Normalize received signal with calibrated normalisation
+ rxframe = rxframe * self.rx_normalisation
+ txframe_aligned, rxframe_aligned, coarse_offset = align_samples(txframe, rxframe)
+ self._bin_and_accumulate(txframe_aligned, rxframe_aligned)
+ return txframe_aligned, tx_ts, tx_median, rxframe_aligned, rx_ts, rx_median
def bin_histogram(self):
return [b.shape[0] for b in self.accumulated_bins]