summaryrefslogtreecommitdiffstats
path: root/gui/dpd/Align.py
diff options
context:
space:
mode:
authorMatthias P. Braendli <matthias.braendli@mpb.li>2018-12-04 10:18:33 +0100
committerMatthias P. Braendli <matthias.braendli@mpb.li>2018-12-04 10:18:33 +0100
commitd5cbe10c0e2298b0e40161607a3da158249bdb82 (patch)
tree5f6a0ff40ce5b3dd39d0df1c348557b183b48a7e /gui/dpd/Align.py
parent594cb2691debaa7562fd7d76d3b224701ec087ea (diff)
downloaddabmod-d5cbe10c0e2298b0e40161607a3da158249bdb82.tar.gz
dabmod-d5cbe10c0e2298b0e40161607a3da158249bdb82.tar.bz2
dabmod-d5cbe10c0e2298b0e40161607a3da158249bdb82.zip
Move python stuff to folder
Diffstat (limited to 'gui/dpd/Align.py')
-rw-r--r--gui/dpd/Align.py166
1 files changed, 0 insertions, 166 deletions
diff --git a/gui/dpd/Align.py b/gui/dpd/Align.py
deleted file mode 100644
index 1634ec8..0000000
--- a/gui/dpd/Align.py
+++ /dev/null
@@ -1,166 +0,0 @@
-# -*- coding: utf-8 -*-
-#
-# DPD Computation Engine, utility to do subsample alignment.
-#
-# Copyright (c) 2017 Andreas Steger
-# Copyright (c) 2018 Matthias P. Braendli
-#
-# http://www.opendigitalradio.org
-#
-# This file is part of ODR-DabMod.
-#
-# ODR-DabMod is free software: you can redistribute it and/or modify
-# it under the terms of the GNU General Public License as
-# published by the Free Software Foundation, either version 3 of the
-# License, or (at your option) any later version.
-#
-# ODR-DabMod is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-# GNU General Public License for more details.
-#
-# You should have received a copy of the GNU General Public License
-# along with ODR-DabMod. If not, see <http://www.gnu.org/licenses/>.
-import datetime
-import os
-import numpy as np
-from scipy import optimize
-import matplotlib.pyplot as plt
-
-def gen_omega(length):
- if (length % 2) == 1:
- raise ValueError("Needs an even length array.")
-
- halflength = int(length / 2)
- factor = 2.0 * np.pi / length
-
- omega = np.zeros(length, dtype=np.float)
- for i in range(halflength):
- omega[i] = factor * i
-
- for i in range(halflength, length):
- omega[i] = factor * (i - length)
-
- return omega
-
-
-def subsample_align(sig, ref_sig, plot_location=None):
- """Do subsample alignment for sig relative to the reference signal
- ref_sig. The delay between the two must be less than sample
-
- Returns the aligned signal"""
-
- n = len(sig)
- if (n % 2) == 1:
- raise ValueError("Needs an even length signal.")
- halflen = int(n / 2)
-
- fft_sig = np.fft.fft(sig)
-
- omega = gen_omega(n)
-
- def correlate_for_delay(tau):
- # A subsample offset between two signals corresponds, in the frequency
- # domain, to a linearly increasing phase shift, whose slope
- # corresponds to the delay.
- #
- # Here, we build this phase shift in rotate_vec, and multiply it with
- # our signal.
-
- rotate_vec = np.exp(1j * tau * omega)
- # zero-frequency is rotate_vec[0], so rotate_vec[N/2] is the
- # bin corresponding to the [-1, 1, -1, 1, ...] time signal, which
- # is both the maximum positive and negative frequency.
- # I don't remember why we handle it differently.
- rotate_vec[halflen] = np.cos(np.pi * tau)
-
- corr_sig = np.fft.ifft(rotate_vec * fft_sig)
-
- return -np.abs(np.sum(np.conj(corr_sig) * ref_sig))
-
- optim_result = optimize.minimize_scalar(correlate_for_delay, bounds=(-1, 1), method='bounded',
- options={'disp': True})
-
- if optim_result.success:
- best_tau = optim_result.x
-
- if plot_location is not None:
- corr = np.vectorize(correlate_for_delay)
- ixs = np.linspace(-1, 1, 100)
- taus = corr(ixs)
-
- dt = datetime.datetime.now().isoformat()
- tau_path = (plot_location + "/" + dt + "_tau.png")
- plt.plot(ixs, taus)
- plt.title("Subsample correlation, minimum is best: {}".format(best_tau))
- plt.savefig(tau_path)
- plt.close()
-
- # Prepare rotate_vec = fft_sig with rotated phase
- rotate_vec = np.exp(1j * best_tau * omega)
- rotate_vec[halflen] = np.cos(np.pi * best_tau)
- return np.fft.ifft(rotate_vec * fft_sig).astype(np.complex64)
- else:
- # print("Could not optimize: " + optim_result.message)
- return np.zeros(0, dtype=np.complex64)
-
-def phase_align(sig, ref_sig, plot_location=None):
- """Do phase alignment for sig relative to the reference signal
- ref_sig.
-
- Returns the aligned signal"""
-
- angle_diff = (np.angle(sig) - np.angle(ref_sig)) % (2. * np.pi)
-
- real_diffs = np.cos(angle_diff)
- imag_diffs = np.sin(angle_diff)
-
- if plot_location is not None:
- dt = datetime.datetime.now().isoformat()
- fig_path = plot_location + "/" + dt + "_phase_align.png"
-
- plt.subplot(511)
- plt.hist(angle_diff, bins=60, label="Angle Diff")
- plt.xlabel("Angle")
- plt.ylabel("Count")
- plt.legend(loc=4)
-
- plt.subplot(512)
- plt.hist(real_diffs, bins=60, label="Real Diff")
- plt.xlabel("Real Part")
- plt.ylabel("Count")
- plt.legend(loc=4)
-
- plt.subplot(513)
- plt.hist(imag_diffs, bins=60, label="Imaginary Diff")
- plt.xlabel("Imaginary Part")
- plt.ylabel("Count")
- plt.legend(loc=4)
-
- plt.subplot(514)
- plt.plot(np.angle(ref_sig[:128]), label="ref_sig")
- plt.plot(np.angle(sig[:128]), label="sig")
- plt.xlabel("Angle")
- plt.ylabel("Sample")
- plt.legend(loc=4)
-
- real_diff = np.median(real_diffs)
- imag_diff = np.median(imag_diffs)
-
- angle = np.angle(real_diff + 1j * imag_diff)
-
- #logging.debug( "Compensating phase by {} rad, {} degree. real median {}, imag median {}".format( angle, angle*180./np.pi, real_diff, imag_diff))
- sig = sig * np.exp(1j * -angle)
-
- if plot_location is not None:
- plt.subplot(515)
- plt.plot(np.angle(ref_sig[:128]), label="ref_sig")
- plt.plot(np.angle(sig[:128]), label="sig")
- plt.xlabel("Angle")
- plt.ylabel("Sample")
- plt.legend(loc=4)
- plt.tight_layout()
- plt.savefig(fig_path)
- plt.close()
-
- return sig