diff options
author | Matthias P. Braendli <matthias.braendli@mpb.li> | 2018-12-04 10:18:33 +0100 |
---|---|---|
committer | Matthias P. Braendli <matthias.braendli@mpb.li> | 2018-12-04 10:18:33 +0100 |
commit | d5cbe10c0e2298b0e40161607a3da158249bdb82 (patch) | |
tree | 5f6a0ff40ce5b3dd39d0df1c348557b183b48a7e /gui/dpd/Align.py | |
parent | 594cb2691debaa7562fd7d76d3b224701ec087ea (diff) | |
download | dabmod-d5cbe10c0e2298b0e40161607a3da158249bdb82.tar.gz dabmod-d5cbe10c0e2298b0e40161607a3da158249bdb82.tar.bz2 dabmod-d5cbe10c0e2298b0e40161607a3da158249bdb82.zip |
Move python stuff to folder
Diffstat (limited to 'gui/dpd/Align.py')
-rw-r--r-- | gui/dpd/Align.py | 166 |
1 files changed, 0 insertions, 166 deletions
diff --git a/gui/dpd/Align.py b/gui/dpd/Align.py deleted file mode 100644 index 1634ec8..0000000 --- a/gui/dpd/Align.py +++ /dev/null @@ -1,166 +0,0 @@ -# -*- coding: utf-8 -*- -# -# DPD Computation Engine, utility to do subsample alignment. -# -# Copyright (c) 2017 Andreas Steger -# Copyright (c) 2018 Matthias P. Braendli -# -# http://www.opendigitalradio.org -# -# This file is part of ODR-DabMod. -# -# ODR-DabMod is free software: you can redistribute it and/or modify -# it under the terms of the GNU General Public License as -# published by the Free Software Foundation, either version 3 of the -# License, or (at your option) any later version. -# -# ODR-DabMod is distributed in the hope that it will be useful, -# but WITHOUT ANY WARRANTY; without even the implied warranty of -# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -# GNU General Public License for more details. -# -# You should have received a copy of the GNU General Public License -# along with ODR-DabMod. If not, see <http://www.gnu.org/licenses/>. -import datetime -import os -import numpy as np -from scipy import optimize -import matplotlib.pyplot as plt - -def gen_omega(length): - if (length % 2) == 1: - raise ValueError("Needs an even length array.") - - halflength = int(length / 2) - factor = 2.0 * np.pi / length - - omega = np.zeros(length, dtype=np.float) - for i in range(halflength): - omega[i] = factor * i - - for i in range(halflength, length): - omega[i] = factor * (i - length) - - return omega - - -def subsample_align(sig, ref_sig, plot_location=None): - """Do subsample alignment for sig relative to the reference signal - ref_sig. The delay between the two must be less than sample - - Returns the aligned signal""" - - n = len(sig) - if (n % 2) == 1: - raise ValueError("Needs an even length signal.") - halflen = int(n / 2) - - fft_sig = np.fft.fft(sig) - - omega = gen_omega(n) - - def correlate_for_delay(tau): - # A subsample offset between two signals corresponds, in the frequency - # domain, to a linearly increasing phase shift, whose slope - # corresponds to the delay. - # - # Here, we build this phase shift in rotate_vec, and multiply it with - # our signal. - - rotate_vec = np.exp(1j * tau * omega) - # zero-frequency is rotate_vec[0], so rotate_vec[N/2] is the - # bin corresponding to the [-1, 1, -1, 1, ...] time signal, which - # is both the maximum positive and negative frequency. - # I don't remember why we handle it differently. - rotate_vec[halflen] = np.cos(np.pi * tau) - - corr_sig = np.fft.ifft(rotate_vec * fft_sig) - - return -np.abs(np.sum(np.conj(corr_sig) * ref_sig)) - - optim_result = optimize.minimize_scalar(correlate_for_delay, bounds=(-1, 1), method='bounded', - options={'disp': True}) - - if optim_result.success: - best_tau = optim_result.x - - if plot_location is not None: - corr = np.vectorize(correlate_for_delay) - ixs = np.linspace(-1, 1, 100) - taus = corr(ixs) - - dt = datetime.datetime.now().isoformat() - tau_path = (plot_location + "/" + dt + "_tau.png") - plt.plot(ixs, taus) - plt.title("Subsample correlation, minimum is best: {}".format(best_tau)) - plt.savefig(tau_path) - plt.close() - - # Prepare rotate_vec = fft_sig with rotated phase - rotate_vec = np.exp(1j * best_tau * omega) - rotate_vec[halflen] = np.cos(np.pi * best_tau) - return np.fft.ifft(rotate_vec * fft_sig).astype(np.complex64) - else: - # print("Could not optimize: " + optim_result.message) - return np.zeros(0, dtype=np.complex64) - -def phase_align(sig, ref_sig, plot_location=None): - """Do phase alignment for sig relative to the reference signal - ref_sig. - - Returns the aligned signal""" - - angle_diff = (np.angle(sig) - np.angle(ref_sig)) % (2. * np.pi) - - real_diffs = np.cos(angle_diff) - imag_diffs = np.sin(angle_diff) - - if plot_location is not None: - dt = datetime.datetime.now().isoformat() - fig_path = plot_location + "/" + dt + "_phase_align.png" - - plt.subplot(511) - plt.hist(angle_diff, bins=60, label="Angle Diff") - plt.xlabel("Angle") - plt.ylabel("Count") - plt.legend(loc=4) - - plt.subplot(512) - plt.hist(real_diffs, bins=60, label="Real Diff") - plt.xlabel("Real Part") - plt.ylabel("Count") - plt.legend(loc=4) - - plt.subplot(513) - plt.hist(imag_diffs, bins=60, label="Imaginary Diff") - plt.xlabel("Imaginary Part") - plt.ylabel("Count") - plt.legend(loc=4) - - plt.subplot(514) - plt.plot(np.angle(ref_sig[:128]), label="ref_sig") - plt.plot(np.angle(sig[:128]), label="sig") - plt.xlabel("Angle") - plt.ylabel("Sample") - plt.legend(loc=4) - - real_diff = np.median(real_diffs) - imag_diff = np.median(imag_diffs) - - angle = np.angle(real_diff + 1j * imag_diff) - - #logging.debug( "Compensating phase by {} rad, {} degree. real median {}, imag median {}".format( angle, angle*180./np.pi, real_diff, imag_diff)) - sig = sig * np.exp(1j * -angle) - - if plot_location is not None: - plt.subplot(515) - plt.plot(np.angle(ref_sig[:128]), label="ref_sig") - plt.plot(np.angle(sig[:128]), label="sig") - plt.xlabel("Angle") - plt.ylabel("Sample") - plt.legend(loc=4) - plt.tight_layout() - plt.savefig(fig_path) - plt.close() - - return sig |