aboutsummaryrefslogtreecommitdiffstats
path: root/fpm
diff options
context:
space:
mode:
authorMatthias P. Braendli <matthias.braendli@mpb.li>2024-11-25 21:02:36 +0100
committerMatthias P. Braendli <matthias.braendli@mpb.li>2024-11-25 21:02:36 +0100
commit2e9500d4854a3db9e0f407021934407155b82776 (patch)
tree72681993fb7ebdadb9b9bc41fe9a6a8130ab1da3 /fpm
parent23b5d884dbdb4ce6a20872cce6a48ea0eed39f39 (diff)
parentd45cca6f447c9a72bc9eaeb9d861fa6fcff9e597 (diff)
downloaddabmod-2e9500d4854a3db9e0f407021934407155b82776.tar.gz
dabmod-2e9500d4854a3db9e0f407021934407155b82776.tar.bz2
dabmod-2e9500d4854a3db9e0f407021934407155b82776.zip
Merge branch 'fixedpoint' into next
Diffstat (limited to 'fpm')
-rw-r--r--fpm/LICENSE21
-rw-r--r--fpm/README.md48
-rw-r--r--fpm/fixed.hpp490
-rw-r--r--fpm/ios.hpp740
-rw-r--r--fpm/math.hpp684
5 files changed, 1983 insertions, 0 deletions
diff --git a/fpm/LICENSE b/fpm/LICENSE
new file mode 100644
index 0000000..bb86b71
--- /dev/null
+++ b/fpm/LICENSE
@@ -0,0 +1,21 @@
+MIT License
+
+Copyright (c) 2019 Mike Lankamp
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all
+copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+SOFTWARE.
diff --git a/fpm/README.md b/fpm/README.md
new file mode 100644
index 0000000..38ee444
--- /dev/null
+++ b/fpm/README.md
@@ -0,0 +1,48 @@
+# fpm
+A C++ header-only fixed-point math library. "fpm" stands for "fixed-point math".
+
+It is designed to serve as a drop-in replacement for floating-point types and aims to provide as much of the standard library's functionality as possible with exclusively integers. `fpm` requires C++11 or higher.
+
+[![Build Status](https://travis-ci.org/MikeLankamp/fpm.svg?branch=master)](https://travis-ci.org/MikeLankamp/fpm)
+[![Build status](https://ci.appveyor.com/api/projects/status/0velpwqk38spu412?svg=true)](https://ci.appveyor.com/project/MikeLankamp/fpm)
+
+`fpm` is designed to guard against accidental conversion to and from floats and supports many of the standard C++ maths functions, including trigonometry, power and logarithmic functions, with performance and accuracy generally comparable to alternative libraries.
+
+## Why use fixed-point math?
+There are several reasons why you can not or choose not to use floating-point math, but still want a similar type:
+* Your target platform lacks an FPU, does not support floating-point operations or its floating-point operations are
+ considerably slower than fixed-point integer operations.
+* You require deterministic calculations.
+
+If any of these reasons apply for you, and your problem domain has a clearly outlined range and required resolution,
+then fixed-point numbers might be a solution for you.
+
+## Quick Start
+To use `fpm`, include its header `<fpm/fixed.hpp>` and use the `fpm::fixed_16_16`, `fpm::fixed_24_8` or `fpm::fixed_8_24`
+types as if they were native floating-pointer types:
+```c++
+#include <fpm/fixed.hpp> // For fpm::fixed_16_16
+#include <fpm/math.hpp> // For fpm::cos
+#include <fpm/ios.hpp> // For fpm::operator<<
+#include <iostream> // For std::cin, std::cout
+
+int main() {
+ std::cout << "Please input a number: ";
+ fpm::fixed_16_16 x;
+ std::cin >> x;
+ std::cout << "The cosine of " << x << " radians is: " << cos(x) << std::endl;
+ return 0;
+}
+```
+
+To use the fixed-point equivalents of the `<math.h>` functions such as `sqrt`, `sin` and `log`, include the header `<fpm/math.hpp>`.
+To stream fixed-point values to or from streams, include the header `<fpm/ios.hpp>`.
+
+## Documentation
+Please refer to the [documentation](docs/index.md) for detailed information how to use `fpm`, or skip straight to the [performance](docs/performance.md) or [accuracy](docs/accuracy.md) results.
+
+## Contributions
+This library is a work-in-progress. We welcome any contributions that improve the functional coverage or the performance or accuracy of the mathematical functions.
+
+## License
+See the [LICENSE](LICENSE) file
diff --git a/fpm/fixed.hpp b/fpm/fixed.hpp
new file mode 100644
index 0000000..e2e71bf
--- /dev/null
+++ b/fpm/fixed.hpp
@@ -0,0 +1,490 @@
+#ifndef FPM_FIXED_HPP
+#define FPM_FIXED_HPP
+
+#include <cassert>
+#include <cmath>
+#include <cstdint>
+#include <functional>
+#include <limits>
+#include <type_traits>
+
+namespace fpm
+{
+
+//! Fixed-point number type
+//! \tparam BaseType the base integer type used to store the fixed-point number. This can be a signed or unsigned type.
+//! \tparam IntermediateType the integer type used to store intermediate results during calculations.
+//! \tparam FractionBits the number of bits of the BaseType used to store the fraction
+//! \tparam EnableRounding enable rounding of LSB for multiplication, division, and type conversion
+template <typename BaseType, typename IntermediateType, unsigned int FractionBits, bool EnableRounding = true>
+class fixed
+{
+ static_assert(std::is_integral<BaseType>::value, "BaseType must be an integral type");
+ static_assert(FractionBits > 0, "FractionBits must be greater than zero");
+ static_assert(FractionBits <= sizeof(BaseType) * 8 - 1, "BaseType must at least be able to contain entire fraction, with space for at least one integral bit");
+ static_assert(sizeof(IntermediateType) > sizeof(BaseType), "IntermediateType must be larger than BaseType");
+ static_assert(std::is_signed<IntermediateType>::value == std::is_signed<BaseType>::value, "IntermediateType must have same signedness as BaseType");
+
+ // Although this value fits in the BaseType in terms of bits, if there's only one integral bit, this value
+ // is incorrect (flips from positive to negative), so we must extend the size to IntermediateType.
+ static constexpr IntermediateType FRACTION_MULT = IntermediateType(1) << FractionBits;
+
+ struct raw_construct_tag {};
+ constexpr inline fixed(BaseType val, raw_construct_tag) noexcept : m_value(val) {}
+
+public:
+ inline fixed() noexcept = default;
+
+ // Converts an integral number to the fixed-point type.
+ // Like static_cast, this truncates bits that don't fit.
+ template <typename T, typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
+ constexpr inline explicit fixed(T val) noexcept
+ : m_value(static_cast<BaseType>(val * FRACTION_MULT))
+ {}
+
+ // Converts an floating-point number to the fixed-point type.
+ // Like static_cast, this truncates bits that don't fit.
+ template <typename T, typename std::enable_if<std::is_floating_point<T>::value>::type* = nullptr>
+ constexpr inline explicit fixed(T val) noexcept
+ : m_value(static_cast<BaseType>((EnableRounding) ?
+ (val >= 0.0) ? (val * FRACTION_MULT + T{0.5}) : (val * FRACTION_MULT - T{0.5})
+ : (val * FRACTION_MULT)))
+ {}
+
+ // Constructs from another fixed-point type with possibly different underlying representation.
+ // Like static_cast, this truncates bits that don't fit.
+ template <typename B, typename I, unsigned int F, bool R>
+ constexpr inline explicit fixed(fixed<B,I,F,R> val) noexcept
+ : m_value(from_fixed_point<F>(val.raw_value()).raw_value())
+ {}
+
+ // Explicit conversion to a floating-point type
+ template <typename T, typename std::enable_if<std::is_floating_point<T>::value>::type* = nullptr>
+ constexpr inline explicit operator T() const noexcept
+ {
+ return static_cast<T>(m_value) / FRACTION_MULT;
+ }
+
+ // Explicit conversion to an integral type
+ template <typename T, typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
+ constexpr inline explicit operator T() const noexcept
+ {
+ return static_cast<T>(m_value / FRACTION_MULT);
+ }
+
+ // Returns the raw underlying value of this type.
+ // Do not use this unless you know what you're doing.
+ constexpr inline BaseType raw_value() const noexcept
+ {
+ return m_value;
+ }
+
+ //! Constructs a fixed-point number from another fixed-point number.
+ //! \tparam NumFractionBits the number of bits used by the fraction in \a value.
+ //! \param value the integer fixed-point number
+ template <unsigned int NumFractionBits, typename T, typename std::enable_if<(NumFractionBits > FractionBits)>::type* = nullptr>
+ static constexpr inline fixed from_fixed_point(T value) noexcept
+ {
+ // To correctly round the last bit in the result, we need one more bit of information.
+ // We do this by multiplying by two before dividing and adding the LSB to the real result.
+ return (EnableRounding) ? fixed(static_cast<BaseType>(
+ value / (T(1) << (NumFractionBits - FractionBits)) +
+ (value / (T(1) << (NumFractionBits - FractionBits - 1)) % 2)),
+ raw_construct_tag{}) :
+ fixed(static_cast<BaseType>(value / (T(1) << (NumFractionBits - FractionBits))),
+ raw_construct_tag{});
+ }
+
+ template <unsigned int NumFractionBits, typename T, typename std::enable_if<(NumFractionBits <= FractionBits)>::type* = nullptr>
+ static constexpr inline fixed from_fixed_point(T value) noexcept
+ {
+ return fixed(static_cast<BaseType>(
+ value * (T(1) << (FractionBits - NumFractionBits))),
+ raw_construct_tag{});
+ }
+
+ // Constructs a fixed-point number from its raw underlying value.
+ // Do not use this unless you know what you're doing.
+ static constexpr inline fixed from_raw_value(BaseType value) noexcept
+ {
+ return fixed(value, raw_construct_tag{});
+ }
+
+ //
+ // Constants
+ //
+ static constexpr fixed e() { return from_fixed_point<61>(6267931151224907085ll); }
+ static constexpr fixed pi() { return from_fixed_point<61>(7244019458077122842ll); }
+ static constexpr fixed half_pi() { return from_fixed_point<62>(7244019458077122842ll); }
+ static constexpr fixed two_pi() { return from_fixed_point<60>(7244019458077122842ll); }
+
+ //
+ // Arithmetic member operators
+ //
+
+ constexpr inline fixed operator-() const noexcept
+ {
+ return fixed::from_raw_value(-m_value);
+ }
+
+ inline fixed& operator+=(const fixed& y) noexcept
+ {
+ m_value += y.m_value;
+ return *this;
+ }
+
+ template <typename I, typename std::enable_if<std::is_integral<I>::value>::type* = nullptr>
+ inline fixed& operator+=(I y) noexcept
+ {
+ m_value += y * FRACTION_MULT;
+ return *this;
+ }
+
+ inline fixed& operator-=(const fixed& y) noexcept
+ {
+ m_value -= y.m_value;
+ return *this;
+ }
+
+ template <typename I, typename std::enable_if<std::is_integral<I>::value>::type* = nullptr>
+ inline fixed& operator-=(I y) noexcept
+ {
+ m_value -= y * FRACTION_MULT;
+ return *this;
+ }
+
+ inline fixed& operator*=(const fixed& y) noexcept
+ {
+ if (EnableRounding){
+ // Normal fixed-point multiplication is: x * y / 2**FractionBits.
+ // To correctly round the last bit in the result, we need one more bit of information.
+ // We do this by multiplying by two before dividing and adding the LSB to the real result.
+ auto value = (static_cast<IntermediateType>(m_value) * y.m_value) / (FRACTION_MULT / 2);
+ m_value = static_cast<BaseType>((value / 2) + (value % 2));
+ } else {
+ auto value = (static_cast<IntermediateType>(m_value) * y.m_value) / FRACTION_MULT;
+ m_value = static_cast<BaseType>(value);
+ }
+ return *this;
+ }
+
+ template <typename I, typename std::enable_if<std::is_integral<I>::value>::type* = nullptr>
+ inline fixed& operator*=(I y) noexcept
+ {
+ m_value *= y;
+ return *this;
+ }
+
+ inline fixed& operator/=(const fixed& y) noexcept
+ {
+ assert(y.m_value != 0);
+ if (EnableRounding){
+ // Normal fixed-point division is: x * 2**FractionBits / y.
+ // To correctly round the last bit in the result, we need one more bit of information.
+ // We do this by multiplying by two before dividing and adding the LSB to the real result.
+ auto value = (static_cast<IntermediateType>(m_value) * FRACTION_MULT * 2) / y.m_value;
+ m_value = static_cast<BaseType>((value / 2) + (value % 2));
+ } else {
+ auto value = (static_cast<IntermediateType>(m_value) * FRACTION_MULT) / y.m_value;
+ m_value = static_cast<BaseType>(value);
+ }
+ return *this;
+ }
+
+ template <typename I, typename std::enable_if<std::is_integral<I>::value>::type* = nullptr>
+ inline fixed& operator/=(I y) noexcept
+ {
+ m_value /= y;
+ return *this;
+ }
+
+private:
+ BaseType m_value;
+};
+
+//
+// Convenience typedefs
+//
+
+using fixed_16_16 = fixed<std::int32_t, std::int64_t, 16>;
+using fixed_24_8 = fixed<std::int32_t, std::int64_t, 8>;
+using fixed_8_24 = fixed<std::int32_t, std::int64_t, 24>;
+
+//
+// Addition
+//
+
+template <typename B, typename I, unsigned int F, bool R>
+constexpr inline fixed<B, I, F, R> operator+(const fixed<B, I, F, R>& x, const fixed<B, I, F, R>& y) noexcept
+{
+ return fixed<B, I, F, R>(x) += y;
+}
+
+template <typename B, typename I, unsigned int F, bool R, typename T, typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
+constexpr inline fixed<B, I, F, R> operator+(const fixed<B, I, F, R>& x, T y) noexcept
+{
+ return fixed<B, I, F, R>(x) += y;
+}
+
+template <typename B, typename I, unsigned int F, bool R, typename T, typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
+constexpr inline fixed<B, I, F, R> operator+(T x, const fixed<B, I, F, R>& y) noexcept
+{
+ return fixed<B, I, F, R>(y) += x;
+}
+
+//
+// Subtraction
+//
+
+template <typename B, typename I, unsigned int F, bool R>
+constexpr inline fixed<B, I, F, R> operator-(const fixed<B, I, F, R>& x, const fixed<B, I, F, R>& y) noexcept
+{
+ return fixed<B, I, F, R>(x) -= y;
+}
+
+template <typename B, typename I, unsigned int F, bool R, typename T, typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
+constexpr inline fixed<B, I, F, R> operator-(const fixed<B, I, F, R>& x, T y) noexcept
+{
+ return fixed<B, I, F, R>(x) -= y;
+}
+
+template <typename B, typename I, unsigned int F, bool R, typename T, typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
+constexpr inline fixed<B, I, F, R> operator-(T x, const fixed<B, I, F, R>& y) noexcept
+{
+ return fixed<B, I, F, R>(x) -= y;
+}
+
+//
+// Multiplication
+//
+
+template <typename B, typename I, unsigned int F, bool R>
+constexpr inline fixed<B, I, F, R> operator*(const fixed<B, I, F, R>& x, const fixed<B, I, F, R>& y) noexcept
+{
+ return fixed<B, I, F, R>(x) *= y;
+}
+
+template <typename B, typename I, unsigned int F, bool R, typename T, typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
+constexpr inline fixed<B, I, F, R> operator*(const fixed<B, I, F, R>& x, T y) noexcept
+{
+ return fixed<B, I, F, R>(x) *= y;
+}
+
+template <typename B, typename I, unsigned int F, bool R, typename T, typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
+constexpr inline fixed<B, I, F, R> operator*(T x, const fixed<B, I, F, R>& y) noexcept
+{
+ return fixed<B, I, F, R>(y) *= x;
+}
+
+//
+// Division
+//
+
+template <typename B, typename I, unsigned int F, bool R>
+constexpr inline fixed<B, I, F, R> operator/(const fixed<B, I, F, R>& x, const fixed<B, I, F, R>& y) noexcept
+{
+ return fixed<B, I, F, R>(x) /= y;
+}
+
+template <typename B, typename I, unsigned int F, typename T, bool R, typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
+constexpr inline fixed<B, I, F, R> operator/(const fixed<B, I, F, R>& x, T y) noexcept
+{
+ return fixed<B, I, F, R>(x) /= y;
+}
+
+template <typename B, typename I, unsigned int F, typename T, bool R, typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
+constexpr inline fixed<B, I, F, R> operator/(T x, const fixed<B, I, F, R>& y) noexcept
+{
+ return fixed<B, I, F, R>(x) /= y;
+}
+
+//
+// Comparison operators
+//
+
+template <typename B, typename I, unsigned int F, bool R>
+constexpr inline bool operator==(const fixed<B, I, F, R>& x, const fixed<B, I, F, R>& y) noexcept
+{
+ return x.raw_value() == y.raw_value();
+}
+
+template <typename B, typename I, unsigned int F, bool R>
+constexpr inline bool operator!=(const fixed<B, I, F, R>& x, const fixed<B, I, F, R>& y) noexcept
+{
+ return x.raw_value() != y.raw_value();
+}
+
+template <typename B, typename I, unsigned int F, bool R>
+constexpr inline bool operator<(const fixed<B, I, F, R>& x, const fixed<B, I, F, R>& y) noexcept
+{
+ return x.raw_value() < y.raw_value();
+}
+
+template <typename B, typename I, unsigned int F, bool R>
+constexpr inline bool operator>(const fixed<B, I, F, R>& x, const fixed<B, I, F, R>& y) noexcept
+{
+ return x.raw_value() > y.raw_value();
+}
+
+template <typename B, typename I, unsigned int F, bool R>
+constexpr inline bool operator<=(const fixed<B, I, F, R>& x, const fixed<B, I, F, R>& y) noexcept
+{
+ return x.raw_value() <= y.raw_value();
+}
+
+template <typename B, typename I, unsigned int F, bool R>
+constexpr inline bool operator>=(const fixed<B, I, F, R>& x, const fixed<B, I, F, R>& y) noexcept
+{
+ return x.raw_value() >= y.raw_value();
+}
+
+namespace detail
+{
+// Number of base-10 digits required to fully represent a number of bits
+static constexpr int max_digits10(int bits)
+{
+ // 8.24 fixed-point equivalent of (int)ceil(bits * std::log10(2));
+ using T = long long;
+ return static_cast<int>((T{bits} * 5050445 + (T{1} << 24) - 1) >> 24);
+}
+
+// Number of base-10 digits that can be fully represented by a number of bits
+static constexpr int digits10(int bits)
+{
+ // 8.24 fixed-point equivalent of (int)(bits * std::log10(2));
+ using T = long long;
+ return static_cast<int>((T{bits} * 5050445) >> 24);
+}
+
+} // namespace detail
+} // namespace fpm
+
+// Specializations for customization points
+namespace std
+{
+
+template <typename B, typename I, unsigned int F, bool R>
+struct hash<fpm::fixed<B,I,F,R>>
+{
+ using argument_type = fpm::fixed<B, I, F, R>;
+ using result_type = std::size_t;
+
+ result_type operator()(argument_type arg) const noexcept(noexcept(std::declval<std::hash<B>>()(arg.raw_value()))) {
+ return m_hash(arg.raw_value());
+ }
+
+private:
+ std::hash<B> m_hash;
+};
+
+template <typename B, typename I, unsigned int F, bool R>
+struct numeric_limits<fpm::fixed<B,I,F,R>>
+{
+ static constexpr bool is_specialized = true;
+ static constexpr bool is_signed = std::numeric_limits<B>::is_signed;
+ static constexpr bool is_integer = false;
+ static constexpr bool is_exact = true;
+ static constexpr bool has_infinity = false;
+ static constexpr bool has_quiet_NaN = false;
+ static constexpr bool has_signaling_NaN = false;
+ static constexpr std::float_denorm_style has_denorm = std::denorm_absent;
+ static constexpr bool has_denorm_loss = false;
+ static constexpr std::float_round_style round_style = std::round_to_nearest;
+ static constexpr bool is_iec_559 = false;
+ static constexpr bool is_bounded = true;
+ static constexpr bool is_modulo = std::numeric_limits<B>::is_modulo;
+ static constexpr int digits = std::numeric_limits<B>::digits;
+
+ // Any number with `digits10` significant base-10 digits (that fits in
+ // the range of the type) is guaranteed to be convertible from text and
+ // back without change. Worst case, this is 0.000...001, so we can only
+ // guarantee this case. Nothing more.
+ static constexpr int digits10 = 1;
+
+ // This is equal to max_digits10 for the integer and fractional part together.
+ static constexpr int max_digits10 =
+ fpm::detail::max_digits10(std::numeric_limits<B>::digits - F) + fpm::detail::max_digits10(F);
+
+ static constexpr int radix = 2;
+ static constexpr int min_exponent = 1 - F;
+ static constexpr int min_exponent10 = -fpm::detail::digits10(F);
+ static constexpr int max_exponent = std::numeric_limits<B>::digits - F;
+ static constexpr int max_exponent10 = fpm::detail::digits10(std::numeric_limits<B>::digits - F);
+ static constexpr bool traps = true;
+ static constexpr bool tinyness_before = false;
+
+ static constexpr fpm::fixed<B,I,F,R> lowest() noexcept {
+ return fpm::fixed<B,I,F,R>::from_raw_value(std::numeric_limits<B>::lowest());
+ };
+
+ static constexpr fpm::fixed<B,I,F,R> min() noexcept {
+ return lowest();
+ }
+
+ static constexpr fpm::fixed<B,I,F,R> max() noexcept {
+ return fpm::fixed<B,I,F,R>::from_raw_value(std::numeric_limits<B>::max());
+ };
+
+ static constexpr fpm::fixed<B,I,F,R> epsilon() noexcept {
+ return fpm::fixed<B,I,F,R>::from_raw_value(1);
+ };
+
+ static constexpr fpm::fixed<B,I,F,R> round_error() noexcept {
+ return fpm::fixed<B,I,F,R>(1) / 2;
+ };
+
+ static constexpr fpm::fixed<B,I,F,R> denorm_min() noexcept {
+ return min();
+ }
+};
+
+template <typename B, typename I, unsigned int F, bool R>
+constexpr bool numeric_limits<fpm::fixed<B,I,F,R>>::is_specialized;
+template <typename B, typename I, unsigned int F, bool R>
+constexpr bool numeric_limits<fpm::fixed<B,I,F,R>>::is_signed;
+template <typename B, typename I, unsigned int F, bool R>
+constexpr bool numeric_limits<fpm::fixed<B,I,F,R>>::is_integer;
+template <typename B, typename I, unsigned int F, bool R>
+constexpr bool numeric_limits<fpm::fixed<B,I,F,R>>::is_exact;
+template <typename B, typename I, unsigned int F, bool R>
+constexpr bool numeric_limits<fpm::fixed<B,I,F,R>>::has_infinity;
+template <typename B, typename I, unsigned int F, bool R>
+constexpr bool numeric_limits<fpm::fixed<B,I,F,R>>::has_quiet_NaN;
+template <typename B, typename I, unsigned int F, bool R>
+constexpr bool numeric_limits<fpm::fixed<B,I,F,R>>::has_signaling_NaN;
+template <typename B, typename I, unsigned int F, bool R>
+constexpr std::float_denorm_style numeric_limits<fpm::fixed<B,I,F,R>>::has_denorm;
+template <typename B, typename I, unsigned int F, bool R>
+constexpr bool numeric_limits<fpm::fixed<B,I,F,R>>::has_denorm_loss;
+template <typename B, typename I, unsigned int F, bool R>
+constexpr std::float_round_style numeric_limits<fpm::fixed<B,I,F,R>>::round_style;
+template <typename B, typename I, unsigned int F, bool R>
+constexpr bool numeric_limits<fpm::fixed<B,I,F,R>>::is_iec_559;
+template <typename B, typename I, unsigned int F, bool R>
+constexpr bool numeric_limits<fpm::fixed<B,I,F,R>>::is_bounded;
+template <typename B, typename I, unsigned int F, bool R>
+constexpr bool numeric_limits<fpm::fixed<B,I,F,R>>::is_modulo;
+template <typename B, typename I, unsigned int F, bool R>
+constexpr int numeric_limits<fpm::fixed<B,I,F,R>>::digits;
+template <typename B, typename I, unsigned int F, bool R>
+constexpr int numeric_limits<fpm::fixed<B,I,F,R>>::digits10;
+template <typename B, typename I, unsigned int F, bool R>
+constexpr int numeric_limits<fpm::fixed<B,I,F,R>>::max_digits10;
+template <typename B, typename I, unsigned int F, bool R>
+constexpr int numeric_limits<fpm::fixed<B,I,F,R>>::radix;
+template <typename B, typename I, unsigned int F, bool R>
+constexpr int numeric_limits<fpm::fixed<B,I,F,R>>::min_exponent;
+template <typename B, typename I, unsigned int F, bool R>
+constexpr int numeric_limits<fpm::fixed<B,I,F,R>>::min_exponent10;
+template <typename B, typename I, unsigned int F, bool R>
+constexpr int numeric_limits<fpm::fixed<B,I,F,R>>::max_exponent;
+template <typename B, typename I, unsigned int F, bool R>
+constexpr int numeric_limits<fpm::fixed<B,I,F,R>>::max_exponent10;
+template <typename B, typename I, unsigned int F, bool R>
+constexpr bool numeric_limits<fpm::fixed<B,I,F,R>>::traps;
+template <typename B, typename I, unsigned int F, bool R>
+constexpr bool numeric_limits<fpm::fixed<B,I,F,R>>::tinyness_before;
+
+}
+
+#endif
diff --git a/fpm/ios.hpp b/fpm/ios.hpp
new file mode 100644
index 0000000..69581fb
--- /dev/null
+++ b/fpm/ios.hpp
@@ -0,0 +1,740 @@
+#ifndef FPM_IOS_HPP
+#define FPM_IOS_HPP
+
+#include "fixed.hpp"
+#include "math.hpp"
+#include <array>
+#include <algorithm>
+#include <cctype>
+#include <climits>
+#include <limits>
+#include <ios>
+#include <vector>
+
+namespace fpm
+{
+
+template <typename CharT, typename B, typename I, unsigned int F, bool R>
+std::basic_ostream<CharT>& operator<<(std::basic_ostream<CharT>& os, fixed<B, I, F, R> x) noexcept
+{
+ const auto uppercase = ((os.flags() & std::ios_base::uppercase) != 0);
+ const auto showpoint = ((os.flags() & std::ios_base::showpoint) != 0);
+ const auto adjustfield = (os.flags() & std::ios_base::adjustfield);
+ const auto width = os.width();
+ const auto& ctype = std::use_facet<std::ctype<CharT>>(os.getloc());
+ const auto& numpunct = std::use_facet<std::numpunct<CharT>>(os.getloc());
+
+ auto floatfield = (os.flags() & std::ios_base::floatfield);
+ auto precision = os.precision();
+ auto show_trailing_zeros = true;
+ auto use_significant_digits = false;
+
+ // Invalid precision? Reset to the default
+ if (precision < 0)
+ {
+ precision = 6;
+ }
+
+ // Output buffer. Needs to be big enough for the formatted number without padding.
+ // Optional prefixes (i.e. "+"/"-", decimal separator, exponent "e+/-" and/or "0x").
+ constexpr auto worst_case_constant_size = 6;
+ // Maximum number of digits from the base type (covers integral + fractional digits)
+ constexpr auto worst_case_digit_count = std::numeric_limits<B>::digits10 + 2;
+ // Exponent suffixes (i.e. maximum digits based on log of the base type size).
+ // Needs a log10, but that isn't constexpr, so we're over-allocating on the stack. Can't hurt.
+ constexpr auto worst_case_suffix_size = std::numeric_limits<B>::digits;
+ // Double the digit count: in the worst case the thousands grouping add a character per digit.
+ using buffer_t = std::array<CharT, worst_case_constant_size + worst_case_digit_count * 2 + worst_case_suffix_size>;
+ buffer_t buffer;
+
+ // Output cursor
+ auto end = buffer.begin();
+
+ // Keep track of the start of "internal" padding
+ typename buffer_t::iterator internal_pad = buffer.end();
+
+ // Representation of a number.
+ // The value of the number is: raw / divisor * (10|2) ^ exponent
+ // The base of the exponent is 2 in hexfloat mode, or 10 otherwise.
+ struct number_t {
+ I raw; // raw fixed-point value
+ I divisor; // the divisor indicating the place of the decimal point
+ int exponent; // the exponent applied
+ };
+
+ // Convert a value without exponent to scientific representation
+ // where the part before the decimal point is less than 10.
+ const auto as_scientific = [](number_t value) {
+ assert(value.exponent == 0);
+ if (value.raw > 0)
+ {
+ while (value.raw / 10 >= value.divisor) {
+ value.divisor *= 10;
+ ++value.exponent;
+ }
+ while (value.raw < value.divisor) {
+ value.raw *= 10;
+ --value.exponent;
+ }
+ }
+ return value;
+ };
+
+ number_t value = { x.raw_value(), I{1} << F, 0};
+
+ auto base = B{10};
+
+ // First write the sign
+ if (value.raw < 0)
+ {
+ *end++ = ctype.widen('-');
+ value.raw = -value.raw;
+ internal_pad = end;
+ }
+ else if (os.flags() & std::ios_base::showpos)
+ {
+ *end++ = ctype.widen('+');
+ internal_pad = end;
+ }
+ assert(value.raw >= 0);
+
+ switch (floatfield)
+ {
+ case std::ios_base::fixed | std::ios_base::scientific:
+ // Hexadecimal mode: figure out the hexadecimal exponent and write "0x"
+ if (value.raw > 0)
+ {
+ auto bit = detail::find_highest_bit(value.raw);
+ value.exponent = bit - F; // exponent is applied to base 2
+ value.divisor = I{1} << bit; // divisor is at the highest bit, ensuring it starts with "1."
+ precision = (bit + 3) / 4; // precision is number of nibbles, so we show all of them
+ }
+ base = 16;
+ show_trailing_zeros = false; // Always strip trailing zeros in hexfloat mode
+
+ *end++ = ctype.widen('0');
+ *end++ = ctype.widen(uppercase ? 'X' : 'x');
+ break;
+
+ case std::ios_base::scientific:
+ // Scientific mode, normalize value to scientific notation
+ value = as_scientific(value);
+ break;
+
+ case std::ios_base::fixed:
+ // Fixed mode. Nothing to do.
+ break;
+
+ default:
+ {
+ // "auto" mode: figure out the exponent
+ const number_t sci_value = as_scientific(value);
+
+ // Now `precision` indicates the number of *significant digits* (not fractional digits).
+ use_significant_digits = true;
+ precision = std::max<std::streamsize>(precision, 1);
+
+ if (sci_value.exponent >= precision || sci_value.exponent < -4) {
+ // Display as scientific format
+ floatfield = std::ios_base::scientific;
+ value = sci_value;
+ } else {
+ // Display as fixed format.
+ // "showpoint" indicates whether or not we show trailing zeros
+ floatfield = std::ios_base::fixed;
+ show_trailing_zeros = showpoint;
+ }
+ break;
+ }
+ };
+
+ // If we didn't write a sign, any internal padding starts here
+ // (after a potential "0x" for hexfloats).
+ if (internal_pad == buffer.end()) {
+ internal_pad = end;
+ }
+
+ // Separate out the integral part of the number
+ I integral = value.raw / value.divisor;
+ value.raw %= value.divisor;
+
+ // Here we start printing the number itself
+ const char* const digits = uppercase ? "0123456789ABCDEF" : "0123456789abcdef";
+ const auto digits_start = end;
+
+ // Are we already printing significant digits? (yes if we're not counting significant digits)
+ bool significant_digits = !use_significant_digits;
+
+ // Print the integral part
+ int last_digit = 0;
+ if (integral == 0) {
+ *end++ = ctype.widen('0');
+ if (value.raw == 0) {
+ // If the fraction is zero too, all zeros including the integral count
+ // as significant digits.
+ significant_digits = true;
+ }
+ } else {
+ while (integral > 0) {
+ last_digit = integral % base;
+ *end++ = ctype.widen(digits[last_digit]);
+ integral /= base;
+ }
+ std::reverse(digits_start, end);
+ significant_digits = true;
+ }
+
+ if (use_significant_digits && significant_digits)
+ {
+ // Apparently the integral part was significant; subtract its
+ // length from the remaining significant digits.
+ precision -= (end - digits_start);
+ }
+
+ // At this point, `value` contains only the fraction and
+ // `precision` holds the number of digits to print.
+ assert(value.raw < value.divisor);
+ assert(precision >= 0);
+
+ // Location of decimal point
+ typename buffer_t::iterator point = buffer.end();
+
+ // Start (and length) of the trailing zeros to insert while printing
+ // By tracking this to print them later instead of actually printing them now,
+ // we can support large precisions with a small printing buffer.
+ typename buffer_t::iterator trailing_zeros_start = buffer.end();
+ std::streamsize trailing_zeros_count = 0;
+
+ if (precision > 0)
+ {
+ // Print the fractional part
+ *(point = end++) = numpunct.decimal_point();
+
+ for (int i = 0; i < precision; ++i)
+ {
+ if (value.raw == 0)
+ {
+ // The rest of the digits are all zeros, mark them
+ // to be printed in this spot.
+ trailing_zeros_start = end;
+ trailing_zeros_count = precision - i;
+ break;
+ }
+
+ // Shift the divisor if we can to avoid overflow on the value
+ if (value.divisor % base == 0) {
+ value.divisor /= base;
+ } else {
+ value.raw *= base;
+ }
+ assert(value.divisor > 0);
+ assert(value.raw >= 0);
+ last_digit = (value.raw / value.divisor) % base;
+ value.raw %= value.divisor;
+ *end++ = ctype.widen(digits[last_digit]);
+
+ if (!significant_digits) {
+ // We're still finding the first significant digit
+ if (last_digit != 0) {
+ // Found it
+ significant_digits = true;
+ } else {
+ // Not yet; increment number of digits to print
+ ++precision;
+ }
+ }
+ }
+ }
+ else if (showpoint)
+ {
+ // No fractional part to print, but we still want the point
+ *(point = end++) = numpunct.decimal_point();
+ }
+
+ // Insert `ch` into the output at `position`, updating all references accordingly
+ const auto insert_character = [&](typename buffer_t::iterator position, CharT ch) {
+ assert(position >= buffer.begin() && position < end);
+ std::move_backward(position, end, end + 1);
+ if (point != buffer.end() && position < point) {
+ ++point;
+ }
+ if (trailing_zeros_start != buffer.end() && position < trailing_zeros_start) {
+ ++trailing_zeros_start;
+ }
+ ++end;
+ *position = ch;
+ };
+
+ // Round the number: round to nearest
+ bool increment = false;
+ if (value.raw > value.divisor / 2) {
+ // Round up
+ increment = true;
+ } else if (value.raw == value.divisor / 2) {
+ // It's a tie (i.e. "xyzw.5"): round to even
+ increment = ((last_digit % 2) == 1);
+ }
+
+ if (increment)
+ {
+ auto p = end - 1;
+ // Increment all digits backwards while we see "9"
+ while (p >= digits_start) {
+ if (p == point) {
+ // Skip over the decimal point
+ --p;
+ }
+ if ((*p)++ != ctype.widen('9')) {
+ break;
+ }
+ *p-- = ctype.widen('0');
+ }
+
+ if (p < digits_start) {
+ // We've incremented all the way to the start (all 9's), we need to insert the
+ // carried-over 1 from incrementing the last 9.
+ assert(p == digits_start - 1);
+ insert_character(++p, ctype.widen('1'));
+
+ if (floatfield == std::ios::scientific)
+ {
+ // We just made the integral part equal to 10, so we shift the decimal point
+ // back one place (if any) and tweak the exponent, so that we keep the integer part
+ // less than 10.
+ if (point != buffer.end()) {
+ assert(p + 2 == point);
+ std::swap(*(point - 1), *point);
+ --point;
+ }
+ ++value.exponent;
+
+ // We've introduced an extra digit so we need to strip the last digit
+ // to maintain the same precision
+ --end;
+ }
+ }
+
+ if (use_significant_digits && *p == ctype.widen('1') && point != buffer.end()) {
+ // We've converted a leading zero to a 1 so we need to strip the last digit
+ // (behind the decimal point) to maintain the same significant digit count.
+ --end;
+ }
+ }
+
+ if (point != buffer.end())
+ {
+ if (!show_trailing_zeros)
+ {
+ // Remove trailing zeros
+ while (*(end - 1) == ctype.widen('0')) {
+ --end;
+ }
+
+ // Also clear the "trailing zeros to append during printing" range
+ trailing_zeros_start = buffer.end();
+ trailing_zeros_count = 0;
+ }
+
+ if (end - 1 == point && trailing_zeros_count == 0 && !showpoint) {
+ // Remove the decimal point, too
+ --end;
+ }
+ }
+
+ // Apply thousands grouping
+ const auto& grouping = numpunct.grouping();
+ if (!grouping.empty())
+ {
+ // Step backwards from the end or decimal point, inserting the
+ // thousands separator at every group interval.
+ const CharT thousands_sep = ctype.widen(numpunct.thousands_sep());
+ std::size_t group = 0;
+ auto p = point != buffer.end() ? point : end;
+ auto size = static_cast<int>(grouping[group]);
+ while (size > 0 && size < CHAR_MAX && p - digits_start > size) {
+ p -= size;
+ insert_character(p, thousands_sep);
+ if (group < grouping.size() - 1) {
+ size = static_cast<int>(grouping[++group]);
+ }
+ }
+ }
+
+ // Print the exponent if required
+ assert(floatfield != 0);
+ if (floatfield & std::ios_base::scientific)
+ {
+ // Hexadecimal (%a/%A) or decimal (%e/%E) scientific notation
+ if (floatfield & std::ios_base::fixed) {
+ *end++ = ctype.widen(uppercase ? 'P' : 'p');
+ } else {
+ *end++ = ctype.widen(uppercase ? 'E' : 'e');
+ }
+
+ if (value.exponent < 0) {
+ *end++ = ctype.widen('-');
+ value.exponent = -value.exponent;
+ } else {
+ *end++ = ctype.widen('+');
+ }
+
+ if (floatfield == std::ios_base::scientific) {
+ // In decimal scientific notation (%e/%E), the exponent is at least two digits
+ if (value.exponent < 10) {
+ *end++ = ctype.widen('0');
+ }
+ }
+
+ const auto exponent_start = end;
+ if (value.exponent == 0) {
+ *end++ = ctype.widen('0');
+ } else while (value.exponent > 0) {
+ *end++ = ctype.widen(digits[value.exponent % 10]);
+ value.exponent /= 10;
+ }
+ std::reverse(exponent_start, end);
+ }
+
+ // Write character `ch` `count` times to the stream
+ const auto sputcn = [&](CharT ch, std::streamsize count){
+ // Fill a buffer to output larger chunks
+ constexpr std::streamsize chunk_size = 64;
+ std::array<CharT, chunk_size> fill_buffer;
+ std::fill_n(fill_buffer.begin(), std::min(count, chunk_size), ch);
+
+ for (std::streamsize size, left = count; left > 0; left -= size) {
+ size = std::min(chunk_size, left);
+ os.rdbuf()->sputn(&fill_buffer[0], size);
+ }
+ };
+
+ // Outputs a range of characters, making sure to output the trailing zeros range
+ // if it lies in the specified range
+ const auto put_range = [&](typename buffer_t::const_iterator begin, typename buffer_t::const_iterator end) {
+ assert(end >= begin);
+ if (trailing_zeros_start >= begin && trailing_zeros_start <= end) {
+ // Print range with trailing zeros range in the middle
+ assert(trailing_zeros_count > 0);
+ os.rdbuf()->sputn(&*begin, trailing_zeros_start - begin);
+ sputcn(ctype.widen('0'), trailing_zeros_count);
+ os.rdbuf()->sputn(&*trailing_zeros_start, end - trailing_zeros_start);
+ } else {
+ // Print range as-is
+ os.rdbuf()->sputn(&*begin, end - begin);
+ }
+ };
+
+ // Pad the buffer if necessary.
+ // Note that the length of trailing zeros is counted towards the length of the content.
+ const auto content_size = end - buffer.begin() + trailing_zeros_count;
+ if (content_size >= width)
+ {
+ // Buffer needs no padding, output as-is
+ put_range(buffer.begin(), end);
+ }
+ else
+ {
+ const auto pad_size = width - content_size;
+ switch (adjustfield)
+ {
+ case std::ios_base::left:
+ // Content is left-aligned, so output the buffer, followed by the padding
+ put_range(buffer.begin(), end);
+ sputcn(os.fill(), pad_size);
+ break;
+ case std::ios_base::internal:
+ // Content is internally aligned, so output the buffer up to the "internal pad"
+ // point, followed by the padding, followed by the remainder of the buffer.
+ put_range(buffer.begin(), internal_pad);
+ sputcn(os.fill(), pad_size);
+ put_range(internal_pad, end);
+ break;
+ default:
+ // Content is right-aligned, so output the padding, followed by the buffer
+ sputcn(os.fill(), pad_size);
+ put_range(buffer.begin(), end);
+ break;
+ }
+ }
+
+ // Width is reset after every write
+ os.width(0);
+
+ return os;
+}
+
+
+template <typename CharT, class Traits, typename B, typename I, unsigned int F, bool R>
+std::basic_istream<CharT, Traits>& operator>>(std::basic_istream<CharT, Traits>& is, fixed<B, I, F, R>& x)
+{
+ typename std::basic_istream<CharT, Traits>::sentry sentry(is);
+ if (!sentry)
+ {
+ return is;
+ }
+
+ const auto& ctype = std::use_facet<std::ctype<CharT>>(is.getloc());
+ const auto& numpunct = std::use_facet<std::numpunct<CharT>>(is.getloc());
+
+ bool thousands_separator_allowed = false;
+ const bool supports_thousands_separators = !numpunct.grouping().empty();
+
+ const auto& is_valid_character = [](char ch) {
+ // Note: allowing ['p', 'i', 'n', 't', 'y'] is technically in violation of the spec (we are emulating std::num_get),
+ // but otherwise we cannot parse hexfloats and "infinity". This is a known issue with the spec (LWG #2381).
+ return std::isxdigit(ch) ||
+ ch == 'x' || ch == 'X' || ch == 'p' || ch == 'P' ||
+ ch == 'i' || ch == 'I' || ch == 'n' || ch == 'N' ||
+ ch == 't' || ch == 'T' || ch == 'y' || ch == 'Y' ||
+ ch == '-' || ch == '+';
+ };
+
+ const auto& peek = [&]() {
+ for(;;) {
+ auto ch = is.rdbuf()->sgetc();
+ if (ch == Traits::eof()) {
+ is.setstate(std::ios::eofbit);
+ return '\0';
+ }
+ if (ch == numpunct.decimal_point()) {
+ return '.';
+ }
+ if (ch == numpunct.thousands_sep())
+ {
+ if (!supports_thousands_separators || !thousands_separator_allowed) {
+ return '\0';
+ }
+ // Ignore valid thousands separators
+ is.rdbuf()->sbumpc();
+ continue;
+ }
+ auto res = ctype.narrow(ch, 0);
+ if (!is_valid_character(res)) {
+ // Invalid character: end input
+ return '\0';
+ }
+ return res;
+ }
+ };
+
+ const auto& bump = [&]() {
+ is.rdbuf()->sbumpc();
+ };
+
+ const auto& next = [&]() {
+ bump();
+ return peek();
+ };
+
+ bool negate = false;
+ auto ch = peek();
+ if (ch == '-') {
+ negate = true;
+ ch = next();
+ } else if (ch == '+') {
+ ch = next();
+ }
+
+ const char infinity[] = "infinity";
+ // Must be "inf" or "infinity"
+ int i = 0;
+ while (i < 8 && ch == infinity[i]) {
+ ++i;
+ ch = next();
+ }
+
+ if (i > 0) {
+ if (i == 3 || i == 8) {
+ x = negate ? std::numeric_limits<fixed<B, I, F, R>>::min() : std::numeric_limits<fixed<B, I, F, R>>::max();
+ } else {
+ is.setstate(std::ios::failbit);
+ }
+ return is;
+ }
+
+ char exponent_char = 'e';
+ int base = 10;
+
+ constexpr auto NoFraction = std::numeric_limits<std::size_t>::max();
+ std::size_t fraction_start = NoFraction;
+ std::vector<unsigned char> significand;
+
+ if (ch == '0') {
+ ch = next();
+ if (ch == 'x' || ch == 'X') {
+ // Hexfloat
+ exponent_char = 'p';
+ base = 16;
+ ch = next();
+ } else {
+ significand.push_back(0);
+ }
+ }
+
+ // Parse the significand
+ thousands_separator_allowed = true;
+ for (;; ch = next()) {
+ if (ch == '.') {
+ if (fraction_start != NoFraction) {
+ // Double decimal point. Stop parsing.
+ break;
+ }
+ fraction_start = significand.size();
+ thousands_separator_allowed = false;
+ } else {
+ unsigned char val = base;
+ if (ch >= '0' && ch <= '9') {
+ val = ch - '0';
+ } else if (ch >= 'a' && ch <= 'f') {
+ val = ch - 'a' + 10;
+ } else if (ch >= 'A' && ch <= 'F') {
+ val = ch - 'A' + 10;
+ }
+ if (val < 0 || val >= base) {
+ break;
+ }
+ significand.push_back(val);
+ }
+ }
+ if (significand.empty()) {
+ // We need a significand
+ is.setstate(std::ios::failbit);
+ return is;
+ }
+ thousands_separator_allowed = false;
+
+ if (fraction_start == NoFraction) {
+ // If we haven't seen a fraction yet, place it at the end of the significand
+ fraction_start = significand.size();
+ }
+
+ // Parse the exponent
+ bool exponent_overflow = false;
+ std::size_t exponent = 0;
+ bool exponent_negate = false;
+ if (std::tolower(ch) == exponent_char)
+ {
+ ch = next();
+ if (ch == '-') {
+ exponent_negate = true;
+ ch = next();
+ } else if (ch == '+') {
+ ch = next();
+ }
+
+ bool parsed = false;
+ while (std::isdigit(ch)) {
+ if (exponent <= std::numeric_limits<int>::max() / 10) {
+ exponent = exponent * 10 + (ch - '0');
+ } else {
+ exponent_overflow = true;
+ }
+ parsed = true;
+ ch = next();
+ }
+ if (!parsed) {
+ // If the exponent character is given, the exponent value may not be empty
+ is.setstate(std::ios::failbit);
+ return is;
+ }
+ }
+
+ // We've parsed all we need. Construct the value.
+ if (exponent_overflow) {
+ // Absolute exponent is too large
+ if (std::all_of(significand.begin(), significand.end(), [](unsigned char x){ return x == 0; })) {
+ // Significand is zero. Exponent doesn't matter.
+ x = fixed<B, I, F, R>(0);
+ } else if (exponent_negate) {
+ // A huge negative exponent approaches 0.
+ x = fixed<B, I, F, R>::from_raw_value(0);
+ } else {
+ // A huge positive exponent approaches infinity.
+ x = std::numeric_limits<fixed<B, I, F, R>>::max();
+ }
+ return is;
+ }
+
+ // Shift the fraction offset according to exponent
+ {
+ const auto exponent_mult = (base == 10) ? 1: 4;
+ if (exponent_negate) {
+ const auto adjust = std::min(exponent / exponent_mult, fraction_start);
+ fraction_start -= adjust;
+ exponent -= adjust * exponent_mult;
+ } else {
+ const auto adjust = std::min(exponent / exponent_mult, significand.size() - fraction_start);
+ fraction_start += adjust;
+ exponent -= adjust * exponent_mult;
+ }
+ }
+
+ constexpr auto IsSigned = std::is_signed<B>::value;
+ constexpr auto IntBits = sizeof(B) * 8 - F - (IsSigned ? 1 : 0);
+ constexpr auto MaxInt = (I{1} << IntBits) - 1;
+ constexpr auto MaxFraction = (I{1} << F) - 1;
+ constexpr auto MaxValue = (I{1} << sizeof(B) * 8) - 1;
+
+ // Parse the integer part
+ I integer = 0;
+ for (std::size_t i = 0; i < fraction_start; ++i) {
+ if (integer > MaxInt / base) {
+ // Overflow
+ x = negate ? std::numeric_limits<fixed<B, I, F, R>>::min() : std::numeric_limits<fixed<B, I, F, R>>::max();
+ return is;
+ }
+ assert(significand[i] < base);
+ integer = integer * base + significand[i];
+ }
+
+ // Parse the fractional part
+ I fraction = 0;
+ I divisor = 1;
+ for (std::size_t i = fraction_start; i < significand.size(); ++i) {
+ assert(significand[i] < base);
+ if (divisor > MaxFraction / base) {
+ // We're done
+ break;
+ }
+ fraction = fraction * base + significand[i];
+ divisor *= base;
+ }
+
+ // Construct the value from the parsed parts
+ I raw_value = (integer << F) + (fraction << F) / divisor;
+
+ // Apply remaining exponent
+ if (exponent_char == 'p') {
+ // Base-2 exponent
+ if (exponent_negate) {
+ raw_value >>= exponent;
+ } else {
+ raw_value <<= exponent;
+ }
+ } else {
+ // Base-10 exponent
+ if (exponent_negate) {
+ I remainder = 0;
+ for (std::size_t e = 0; e < exponent; ++e) {
+ remainder = raw_value % 10;
+ raw_value /= 10;
+ }
+ raw_value += remainder / 5;
+ } else {
+ for (std::size_t e = 0; e < exponent; ++e) {
+ if (raw_value > MaxValue / 10) {
+ // Overflow
+ x = negate ? std::numeric_limits<fixed<B, I, F, R>>::min() : std::numeric_limits<fixed<B, I, F, R>>::max();
+ return is;
+ }
+ raw_value *= 10;
+ }
+ }
+ }
+ x = fixed<B, I, F, R>::from_raw_value(static_cast<B>(negate ? -raw_value : raw_value));
+ return is;
+}
+
+}
+
+#endif
diff --git a/fpm/math.hpp b/fpm/math.hpp
new file mode 100644
index 0000000..7a76349
--- /dev/null
+++ b/fpm/math.hpp
@@ -0,0 +1,684 @@
+#ifndef FPM_MATH_HPP
+#define FPM_MATH_HPP
+
+#include "fixed.hpp"
+#include <cmath>
+
+#ifdef _MSC_VER
+#include <intrin.h>
+#endif
+
+namespace fpm
+{
+
+//
+// Helper functions
+//
+namespace detail
+{
+
+// Returns the index of the most-signifcant set bit
+inline long find_highest_bit(unsigned long long value) noexcept
+{
+ assert(value != 0);
+#if defined(_MSC_VER)
+ unsigned long index;
+#if defined(_WIN64)
+ _BitScanReverse64(&index, value);
+#else
+ if (_BitScanReverse(&index, static_cast<unsigned long>(value >> 32)) != 0) {
+ index += 32;
+ } else {
+ _BitScanReverse(&index, static_cast<unsigned long>(value & 0xfffffffflu));
+ }
+#endif
+ return index;
+#elif defined(__GNUC__) || defined(__clang__)
+ return sizeof(value) * 8 - 1 - __builtin_clzll(value);
+#else
+# error "your platform does not support find_highest_bit()"
+#endif
+}
+
+}
+
+//
+// Classification methods
+//
+
+template <typename B, typename I, unsigned int F, bool R>
+constexpr inline int fpclassify(fixed<B, I, F, R> x) noexcept
+{
+ return (x.raw_value() == 0) ? FP_ZERO : FP_NORMAL;
+}
+
+template <typename B, typename I, unsigned int F, bool R>
+constexpr inline bool isfinite(fixed<B, I, F, R>) noexcept
+{
+ return true;
+}
+
+template <typename B, typename I, unsigned int F, bool R>
+constexpr inline bool isinf(fixed<B, I, F, R>) noexcept
+{
+ return false;
+}
+
+template <typename B, typename I, unsigned int F, bool R>
+constexpr inline bool isnan(fixed<B, I, F, R>) noexcept
+{
+ return false;
+}
+
+template <typename B, typename I, unsigned int F, bool R>
+constexpr inline bool isnormal(fixed<B, I, F, R> x) noexcept
+{
+ return x.raw_value() != 0;
+}
+
+template <typename B, typename I, unsigned int F, bool R>
+constexpr inline bool signbit(fixed<B, I, F, R> x) noexcept
+{
+ return x.raw_value() < 0;
+}
+
+template <typename B, typename I, unsigned int F, bool R>
+constexpr inline bool isgreater(fixed<B, I, F, R> x, fixed<B, I, F, R> y) noexcept
+{
+ return x > y;
+}
+
+template <typename B, typename I, unsigned int F, bool R>
+constexpr inline bool isgreaterequal(fixed<B, I, F, R> x, fixed<B, I, F, R> y) noexcept
+{
+ return x >= y;
+}
+
+template <typename B, typename I, unsigned int F, bool R>
+constexpr inline bool isless(fixed<B, I, F, R> x, fixed<B, I, F, R> y) noexcept
+{
+ return x < y;
+}
+
+template <typename B, typename I, unsigned int F, bool R>
+constexpr inline bool islessequal(fixed<B, I, F, R> x, fixed<B, I, F, R> y) noexcept
+{
+ return x <= y;
+}
+
+template <typename B, typename I, unsigned int F, bool R>
+constexpr inline bool islessgreater(fixed<B, I, F, R> x, fixed<B, I, F, R> y) noexcept
+{
+ return x != y;
+}
+
+template <typename B, typename I, unsigned int F, bool R>
+constexpr inline bool isunordered(fixed<B, I, F, R> x, fixed<B, I, F, R> y) noexcept
+{
+ return false;
+}
+
+//
+// Nearest integer operations
+//
+template <typename B, typename I, unsigned int F, bool R>
+inline fixed<B, I, F, R> ceil(fixed<B, I, F, R> x) noexcept
+{
+ constexpr auto FRAC = B(1) << F;
+ auto value = x.raw_value();
+ if (value > 0) value += FRAC - 1;
+ return fixed<B, I, F, R>::from_raw_value(value / FRAC * FRAC);
+}
+
+template <typename B, typename I, unsigned int F, bool R>
+inline fixed<B, I, F, R> floor(fixed<B, I, F, R> x) noexcept
+{
+ constexpr auto FRAC = B(1) << F;
+ auto value = x.raw_value();
+ if (value < 0) value -= FRAC - 1;
+ return fixed<B, I, F, R>::from_raw_value(value / FRAC * FRAC);
+}
+
+template <typename B, typename I, unsigned int F, bool R>
+inline fixed<B, I, F, R> trunc(fixed<B, I, F, R> x) noexcept
+{
+ constexpr auto FRAC = B(1) << F;
+ return fixed<B, I, F, R>::from_raw_value(x.raw_value() / FRAC * FRAC);
+}
+
+template <typename B, typename I, unsigned int F, bool R>
+inline fixed<B, I, F, R> round(fixed<B, I, F, R> x) noexcept
+{
+ constexpr auto FRAC = B(1) << F;
+ auto value = x.raw_value() / (FRAC / 2);
+ return fixed<B, I, F, R>::from_raw_value(((value / 2) + (value % 2)) * FRAC);
+}
+
+template <typename B, typename I, unsigned int F, bool R>
+fixed<B, I, F, R> nearbyint(fixed<B, I, F, R> x) noexcept
+{
+ // Rounding mode is assumed to be FE_TONEAREST
+ constexpr auto FRAC = B(1) << F;
+ auto value = x.raw_value();
+ const bool is_half = std::abs(value % FRAC) == FRAC / 2;
+ value /= FRAC / 2;
+ value = (value / 2) + (value % 2);
+ value -= (value % 2) * is_half;
+ return fixed<B, I, F, R>::from_raw_value(value * FRAC);
+}
+
+template <typename B, typename I, unsigned int F, bool R>
+constexpr inline fixed<B, I, F, R> rint(fixed<B, I, F, R> x) noexcept
+{
+ // Rounding mode is assumed to be FE_TONEAREST
+ return nearbyint(x);
+}
+
+//
+// Mathematical functions
+//
+template <typename B, typename I, unsigned int F, bool R>
+constexpr inline fixed<B, I, F, R> abs(fixed<B, I, F, R> x) noexcept
+{
+ return (x >= fixed<B, I, F, R>{0}) ? x : -x;
+}
+
+template <typename B, typename I, unsigned int F, bool R>
+constexpr inline fixed<B, I, F, R> fmod(fixed<B, I, F, R> x, fixed<B, I, F, R> y) noexcept
+{
+ return
+ assert(y.raw_value() != 0),
+ fixed<B, I, F, R>::from_raw_value(x.raw_value() % y.raw_value());
+}
+
+template <typename B, typename I, unsigned int F, bool R>
+constexpr inline fixed<B, I, F, R> remainder(fixed<B, I, F, R> x, fixed<B, I, F, R> y) noexcept
+{
+ return
+ assert(y.raw_value() != 0),
+ x - nearbyint(x / y) * y;
+}
+
+template <typename B, typename I, unsigned int F, bool R>
+inline fixed<B, I, F, R> remquo(fixed<B, I, F, R> x, fixed<B, I, F, R> y, int* quo) noexcept
+{
+ assert(y.raw_value() != 0);
+ assert(quo != nullptr);
+ *quo = x.raw_value() / y.raw_value();
+ return fixed<B, I, F, R>::from_raw_value(x.raw_value() % y.raw_value());
+}
+
+//
+// Manipulation functions
+//
+
+template <typename B, typename I, unsigned int F, bool R, typename C, typename J, unsigned int G, bool S>
+constexpr inline fixed<B, I, F, R> copysign(fixed<B, I, F, R> x, fixed<C, J, G, S> y) noexcept
+{
+ return
+ x = abs(x),
+ (y >= fixed<C, J, G, S>{0}) ? x : -x;
+}
+
+template <typename B, typename I, unsigned int F, bool R>
+constexpr inline fixed<B, I, F, R> nextafter(fixed<B, I, F, R> from, fixed<B, I, F, R> to) noexcept
+{
+ return from == to ? to :
+ to > from ? fixed<B, I, F, R>::from_raw_value(from.raw_value() + 1)
+ : fixed<B, I, F, R>::from_raw_value(from.raw_value() - 1);
+}
+
+template <typename B, typename I, unsigned int F, bool R>
+constexpr inline fixed<B, I, F, R> nexttoward(fixed<B, I, F, R> from, fixed<B, I, F, R> to) noexcept
+{
+ return nextafter(from, to);
+}
+
+template <typename B, typename I, unsigned int F, bool R>
+inline fixed<B, I, F, R> modf(fixed<B, I, F, R> x, fixed<B, I, F, R>* iptr) noexcept
+{
+ const auto raw = x.raw_value();
+ constexpr auto FRAC = B{1} << F;
+ *iptr = fixed<B, I, F, R>::from_raw_value(raw / FRAC * FRAC);
+ return fixed<B, I, F, R>::from_raw_value(raw % FRAC);
+}
+
+
+//
+// Power functions
+//
+
+template <typename B, typename I, unsigned int F, bool R, typename T, typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
+fixed<B, I, F, R> pow(fixed<B, I, F, R> base, T exp) noexcept
+{
+ using Fixed = fixed<B, I, F, R>;
+
+ if (base == Fixed(0)) {
+ assert(exp > 0);
+ return Fixed(0);
+ }
+
+ Fixed result {1};
+ if (exp < 0)
+ {
+ for (Fixed intermediate = base; exp != 0; exp /= 2, intermediate *= intermediate)
+ {
+ if ((exp % 2) != 0)
+ {
+ result /= intermediate;
+ }
+ }
+ }
+ else
+ {
+ for (Fixed intermediate = base; exp != 0; exp /= 2, intermediate *= intermediate)
+ {
+ if ((exp % 2) != 0)
+ {
+ result *= intermediate;
+ }
+ }
+ }
+ return result;
+}
+
+template <typename B, typename I, unsigned int F, bool R>
+fixed<B, I, F, R> pow(fixed<B, I, F, R> base, fixed<B, I, F, R> exp) noexcept
+{
+ using Fixed = fixed<B, I, F, R>;
+
+ if (base == Fixed(0)) {
+ assert(exp > Fixed(0));
+ return Fixed(0);
+ }
+
+ if (exp < Fixed(0))
+ {
+ return 1 / pow(base, -exp);
+ }
+
+ constexpr auto FRAC = B(1) << F;
+ if (exp.raw_value() % FRAC == 0)
+ {
+ // Non-fractional exponents are easier to calculate
+ return pow(base, exp.raw_value() / FRAC);
+ }
+
+ // For negative bases we do not support fractional exponents.
+ // Technically fractions with odd denominators could work,
+ // but that's too much work to figure out.
+ assert(base > Fixed(0));
+ return exp2(log2(base) * exp);
+}
+
+template <typename B, typename I, unsigned int F, bool R>
+fixed<B, I, F, R> exp(fixed<B, I, F, R> x) noexcept
+{
+ using Fixed = fixed<B, I, F, R>;
+ if (x < Fixed(0)) {
+ return 1 / exp(-x);
+ }
+ constexpr auto FRAC = B(1) << F;
+ const B x_int = x.raw_value() / FRAC;
+ x -= x_int;
+ assert(x >= Fixed(0) && x < Fixed(1));
+
+ constexpr auto fA = Fixed::template from_fixed_point<63>( 128239257017632854ll); // 1.3903728105644451e-2
+ constexpr auto fB = Fixed::template from_fixed_point<63>( 320978614890280666ll); // 3.4800571158543038e-2
+ constexpr auto fC = Fixed::template from_fixed_point<63>(1571680799599592947ll); // 1.7040197373796334e-1
+ constexpr auto fD = Fixed::template from_fixed_point<63>(4603349000587966862ll); // 4.9909609871464493e-1
+ constexpr auto fE = Fixed::template from_fixed_point<62>(4612052447974689712ll); // 1.0000794567422495
+ constexpr auto fF = Fixed::template from_fixed_point<63>(9223361618412247875ll); // 9.9999887043019773e-1
+ return pow(Fixed::e(), x_int) * (((((fA * x + fB) * x + fC) * x + fD) * x + fE) * x + fF);
+}
+
+template <typename B, typename I, unsigned int F, bool R>
+fixed<B, I, F, R> exp2(fixed<B, I, F, R> x) noexcept
+{
+ using Fixed = fixed<B, I, F, R>;
+ if (x < Fixed(0)) {
+ return 1 / exp2(-x);
+ }
+ constexpr auto FRAC = B(1) << F;
+ const B x_int = x.raw_value() / FRAC;
+ x -= x_int;
+ assert(x >= Fixed(0) && x < Fixed(1));
+
+ constexpr auto fA = Fixed::template from_fixed_point<63>( 17491766697771214ll); // 1.8964611454333148e-3
+ constexpr auto fB = Fixed::template from_fixed_point<63>( 82483038782406547ll); // 8.9428289841091295e-3
+ constexpr auto fC = Fixed::template from_fixed_point<63>( 515275173969157690ll); // 5.5866246304520701e-2
+ constexpr auto fD = Fixed::template from_fixed_point<63>(2214897896212987987ll); // 2.4013971109076949e-1
+ constexpr auto fE = Fixed::template from_fixed_point<63>(6393224161192452326ll); // 6.9315475247516736e-1
+ constexpr auto fF = Fixed::template from_fixed_point<63>(9223371050976163566ll); // 9.9999989311082668e-1
+ return Fixed(1 << x_int) * (((((fA * x + fB) * x + fC) * x + fD) * x + fE) * x + fF);
+}
+
+template <typename B, typename I, unsigned int F, bool R>
+fixed<B, I, F, R> expm1(fixed<B, I, F, R> x) noexcept
+{
+ return exp(x) - 1;
+}
+
+template <typename B, typename I, unsigned int F, bool R>
+fixed<B, I, F, R> log2(fixed<B, I, F, R> x) noexcept
+{
+ using Fixed = fixed<B, I, F, R>;
+ assert(x > Fixed(0));
+
+ // Normalize input to the [1:2] domain
+ B value = x.raw_value();
+ const long highest = detail::find_highest_bit(value);
+ if (highest >= F) {
+ value >>= (highest - F);
+ } else {
+ value <<= (F - highest);
+ }
+ x = Fixed::from_raw_value(value);
+ assert(x >= Fixed(1) && x < Fixed(2));
+
+ constexpr auto fA = Fixed::template from_fixed_point<63>( 413886001457275979ll); // 4.4873610194131727e-2
+ constexpr auto fB = Fixed::template from_fixed_point<63>(-3842121857793256941ll); // -4.1656368651734915e-1
+ constexpr auto fC = Fixed::template from_fixed_point<62>( 7522345947206307744ll); // 1.6311487636297217
+ constexpr auto fD = Fixed::template from_fixed_point<61>(-8187571043052183818ll); // -3.5507929249026341
+ constexpr auto fE = Fixed::template from_fixed_point<60>( 5870342889289496598ll); // 5.0917108110420042
+ constexpr auto fF = Fixed::template from_fixed_point<61>(-6457199832668582866ll); // -2.8003640347009253
+ return Fixed(highest - F) + (((((fA * x + fB) * x + fC) * x + fD) * x + fE) * x + fF);
+}
+
+template <typename B, typename I, unsigned int F, bool R>
+fixed<B, I, F, R> log(fixed<B, I, F, R> x) noexcept
+{
+ using Fixed = fixed<B, I, F, R>;
+ return log2(x) / log2(Fixed::e());
+}
+
+template <typename B, typename I, unsigned int F, bool R>
+fixed<B, I, F, R> log10(fixed<B, I, F, R> x) noexcept
+{
+ using Fixed = fixed<B, I, F, R>;
+ return log2(x) / log2(Fixed(10));
+}
+
+template <typename B, typename I, unsigned int F, bool R>
+fixed<B, I, F, R> log1p(fixed<B, I, F, R> x) noexcept
+{
+ return log(1 + x);
+}
+
+template <typename B, typename I, unsigned int F, bool R>
+fixed<B, I, F, R> cbrt(fixed<B, I, F, R> x) noexcept
+{
+ using Fixed = fixed<B, I, F, R>;
+
+ if (x == Fixed(0))
+ {
+ return x;
+ }
+ if (x < Fixed(0))
+ {
+ return -cbrt(-x);
+ }
+ assert(x >= Fixed(0));
+
+ // Finding the cube root of an integer, taken from Hacker's Delight,
+ // based on the square root algorithm.
+
+ // We start at the greatest power of eight that's less than the argument.
+ int ofs = ((detail::find_highest_bit(x.raw_value()) + 2*F) / 3 * 3);
+ I num = I{x.raw_value()};
+ I res = 0;
+
+ const auto do_round = [&]
+ {
+ for (; ofs >= 0; ofs -= 3)
+ {
+ res += res;
+ const I val = (3*res*(res + 1) + 1) << ofs;
+ if (num >= val)
+ {
+ num -= val;
+ res++;
+ }
+ }
+ };
+
+ // We should shift by 2*F (since there are two multiplications), but that
+ // could overflow even the intermediate type, so we have to split the
+ // algorithm up in two rounds of F bits each. Each round will deplete
+ // 'num' digit by digit, so after a round we can shift it again.
+ num <<= F;
+ ofs -= F;
+ do_round();
+
+ num <<= F;
+ ofs += F;
+ do_round();
+
+ return Fixed::from_raw_value(static_cast<B>(res));
+}
+
+template <typename B, typename I, unsigned int F, bool R>
+fixed<B, I, F, R> sqrt(fixed<B, I, F, R> x) noexcept
+{
+ using Fixed = fixed<B, I, F, R>;
+
+ assert(x >= Fixed(0));
+ if (x == Fixed(0))
+ {
+ return x;
+ }
+
+ // Finding the square root of an integer in base-2, from:
+ // https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Binary_numeral_system_.28base_2.29
+
+ // Shift by F first because it's fixed-point.
+ I num = I{x.raw_value()} << F;
+ I res = 0;
+
+ // "bit" starts at the greatest power of four that's less than the argument.
+ for (I bit = I{1} << ((detail::find_highest_bit(x.raw_value()) + F) / 2 * 2); bit != 0; bit >>= 2)
+ {
+ const I val = res + bit;
+ res >>= 1;
+ if (num >= val)
+ {
+ num -= val;
+ res += bit;
+ }
+ }
+
+ // Round the last digit up if necessary
+ if (num > res)
+ {
+ res++;
+ }
+
+ return Fixed::from_raw_value(static_cast<B>(res));
+}
+
+template <typename B, typename I, unsigned int F, bool R>
+fixed<B, I, F, R> hypot(fixed<B, I, F, R> x, fixed<B, I, F, R> y) noexcept
+{
+ assert(x != 0 || y != 0);
+ return sqrt(x*x + y*y);
+}
+
+//
+// Trigonometry functions
+//
+
+template <typename B, typename I, unsigned int F, bool R>
+fixed<B, I, F, R> sin(fixed<B, I, F, R> x) noexcept
+{
+ // This sine uses a fifth-order curve-fitting approximation originally
+ // described by Jasper Vijn on coranac.com which has a worst-case
+ // relative error of 0.07% (over [-pi:pi]).
+ using Fixed = fixed<B, I, F, R>;
+
+ // Turn x from [0..2*PI] domain into [0..4] domain
+ x = fmod(x, Fixed::two_pi());
+ x = x / Fixed::half_pi();
+
+ // Take x modulo one rotation, so [-4..+4].
+ if (x < Fixed(0)) {
+ x += Fixed(4);
+ }
+
+ int sign = +1;
+ if (x > Fixed(2)) {
+ // Reduce domain to [0..2].
+ sign = -1;
+ x -= Fixed(2);
+ }
+
+ if (x > Fixed(1)) {
+ // Reduce domain to [0..1].
+ x = Fixed(2) - x;
+ }
+
+ const Fixed x2 = x*x;
+ return sign * x * (Fixed::pi() - x2*(Fixed::two_pi() - 5 - x2*(Fixed::pi() - 3)))/2;
+}
+
+template <typename B, typename I, unsigned int F, bool R>
+inline fixed<B, I, F, R> cos(fixed<B, I, F, R> x) noexcept
+{
+ using Fixed = fixed<B, I, F, R>;
+ if (x > Fixed(0)) { // Prevent an overflow due to the addition of π/2
+ return sin(x - (Fixed::two_pi() - Fixed::half_pi()));
+ } else {
+ return sin(Fixed::half_pi() + x);
+ }
+}
+
+template <typename B, typename I, unsigned int F, bool R>
+inline fixed<B, I, F, R> tan(fixed<B, I, F, R> x) noexcept
+{
+ auto cx = cos(x);
+
+ // Tangent goes to infinity at 90 and -90 degrees.
+ // We can't represent that with fixed-point maths.
+ assert(abs(cx).raw_value() > 1);
+
+ return sin(x) / cx;
+}
+
+namespace detail {
+
+// Calculates atan(x) assuming that x is in the range [0,1]
+template <typename B, typename I, unsigned int F, bool R>
+fixed<B, I, F, R> atan_sanitized(fixed<B, I, F, R> x) noexcept
+{
+ using Fixed = fixed<B, I, F, R>;
+ assert(x >= Fixed(0) && x <= Fixed(1));
+
+ constexpr auto fA = Fixed::template from_fixed_point<63>( 716203666280654660ll); // 0.0776509570923569
+ constexpr auto fB = Fixed::template from_fixed_point<63>(-2651115102768076601ll); // -0.287434475393028
+ constexpr auto fC = Fixed::template from_fixed_point<63>( 9178930894564541004ll); // 0.995181681698119 (PI/4 - A - B)
+
+ const auto xx = x * x;
+ return ((fA*xx + fB)*xx + fC)*x;
+}
+
+// Calculate atan(y / x), assuming x != 0.
+//
+// If x is very, very small, y/x can easily overflow the fixed-point range.
+// If q = y/x and q > 1, atan(q) would calculate atan(1/q) as intermediate step
+// anyway. We can shortcut that here and avoid the loss of information, thus
+// improving the accuracy of atan(y/x) for very small x.
+template <typename B, typename I, unsigned int F, bool R>
+fixed<B, I, F, R> atan_div(fixed<B, I, F, R> y, fixed<B, I, F, R> x) noexcept
+{
+ using Fixed = fixed<B, I, F, R>;
+ assert(x != Fixed(0));
+
+ // Make sure y and x are positive.
+ // If y / x is negative (when y or x, but not both, are negative), negate the result to
+ // keep the correct outcome.
+ if (y < Fixed(0)) {
+ if (x < Fixed(0)) {
+ return atan_div(-y, -x);
+ }
+ return -atan_div(-y, x);
+ }
+ if (x < Fixed(0)) {
+ return -atan_div(y, -x);
+ }
+ assert(y >= Fixed(0));
+ assert(x > Fixed(0));
+
+ if (y > x) {
+ return Fixed::half_pi() - detail::atan_sanitized(x / y);
+ }
+ return detail::atan_sanitized(y / x);
+}
+
+}
+
+template <typename B, typename I, unsigned int F, bool R>
+fixed<B, I, F, R> atan(fixed<B, I, F, R> x) noexcept
+{
+ using Fixed = fixed<B, I, F, R>;
+ if (x < Fixed(0))
+ {
+ return -atan(-x);
+ }
+
+ if (x > Fixed(1))
+ {
+ return Fixed::half_pi() - detail::atan_sanitized(Fixed(1) / x);
+ }
+
+ return detail::atan_sanitized(x);
+}
+
+template <typename B, typename I, unsigned int F, bool R>
+fixed<B, I, F, R> asin(fixed<B, I, F, R> x) noexcept
+{
+ using Fixed = fixed<B, I, F, R>;
+ assert(x >= Fixed(-1) && x <= Fixed(+1));
+
+ const auto yy = Fixed(1) - x * x;
+ if (yy == Fixed(0))
+ {
+ return copysign(Fixed::half_pi(), x);
+ }
+ return detail::atan_div(x, sqrt(yy));
+}
+
+template <typename B, typename I, unsigned int F, bool R>
+fixed<B, I, F, R> acos(fixed<B, I, F, R> x) noexcept
+{
+ using Fixed = fixed<B, I, F, R>;
+ assert(x >= Fixed(-1) && x <= Fixed(+1));
+
+ if (x == Fixed(-1))
+ {
+ return Fixed::pi();
+ }
+ const auto yy = Fixed(1) - x * x;
+ return Fixed(2)*detail::atan_div(sqrt(yy), Fixed(1) + x);
+}
+
+template <typename B, typename I, unsigned int F, bool R>
+fixed<B, I, F, R> atan2(fixed<B, I, F, R> y, fixed<B, I, F, R> x) noexcept
+{
+ using Fixed = fixed<B, I, F, R>;
+ if (x == Fixed(0))
+ {
+ assert(y != Fixed(0));
+ return (y > Fixed(0)) ? Fixed::half_pi() : -Fixed::half_pi();
+ }
+
+ auto ret = detail::atan_div(y, x);
+
+ if (x < Fixed(0))
+ {
+ return (y >= Fixed(0)) ? ret + Fixed::pi() : ret - Fixed::pi();
+ }
+ return ret;
+}
+
+}
+
+#endif