summaryrefslogtreecommitdiffstats
path: root/dpd
diff options
context:
space:
mode:
authorandreas128 <Andreas>2017-09-13 16:54:08 +0200
committerandreas128 <Andreas>2017-09-13 16:54:08 +0200
commitd87d4e3931dbdc21b5b4678da782498cb4040b84 (patch)
tree05d51da4449e18fd7c5236003b831a409b510e54 /dpd
parent5e2ea8d81bfb2d4916c57c6083cfbc874c723076 (diff)
downloaddabmod-d87d4e3931dbdc21b5b4678da782498cb4040b84.tar.gz
dabmod-d87d4e3931dbdc21b5b4678da782498cb4040b84.tar.bz2
dabmod-d87d4e3931dbdc21b5b4678da782498cb4040b84.zip
Add model_AM to calculate amplitude coefficients
Diffstat (limited to 'dpd')
-rw-r--r--dpd/src/Model_AM.py115
1 files changed, 115 insertions, 0 deletions
diff --git a/dpd/src/Model_AM.py b/dpd/src/Model_AM.py
new file mode 100644
index 0000000..5281dde
--- /dev/null
+++ b/dpd/src/Model_AM.py
@@ -0,0 +1,115 @@
+# -*- coding: utf-8 -*-
+#
+# DPD Calculation Engine, model implementation for Amplitude and not Phase
+#
+# http://www.opendigitalradio.org
+# Licence: The MIT License, see notice at the end of this file
+
+import datetime
+import os
+import logging
+
+logging_path = os.path.dirname(logging.getLoggerClass().root.handlers[0].baseFilename)
+
+import numpy as np
+import matplotlib.pyplot as plt
+from sklearn import linear_model
+
+
+def check_input_get_next_coefs(tx_dpd, rx_received):
+ is_float32 = lambda x: (isinstance(x, np.ndarray) and
+ x.dtype == np.float32 and
+ x.flags.contiguous)
+ assert is_float32(tx_dpd), \
+ "tx_dpd is not float32 but {}".format(tx_dpd[0].dtype)
+ assert is_float32(tx_dpd), \
+ "rx_received is not float32 but {}".format(tx_dpd[0].dtype)
+
+
+class Model_AM:
+ """Calculates new coefficients using the measurement and the previous
+ coefficients"""
+
+ def __init__(self,
+ c,
+ learning_rate_am=0.1,
+ plot=False):
+ self.c = c
+
+ self.learning_rate_am = learning_rate_am
+ self.plot = plot
+
+ def _plot(self, tx_dpd, rx_received, coefs_am, coefs_am_new):
+ if logging.getLogger().getEffectiveLevel() == logging.DEBUG and self.plot:
+ tx_range, rx_est = self.calc_line(coefs_am, 0, 0.6)
+ tx_range_new, rx_est_new = self.calc_line(coefs_am_new, 0, 0.6)
+
+ dt = datetime.datetime.now().isoformat()
+ fig_path = logging_path + "/" + dt + "_Model_AM.svg"
+ sub_rows = 1
+ sub_cols = 1
+ fig = plt.figure(figsize=(sub_cols * 6, sub_rows / 2. * 6))
+ i_sub = 0
+
+ i_sub += 1
+ ax = plt.subplot(sub_rows, sub_cols, i_sub)
+ ax.plot(tx_range, rx_est,
+ label="Estimated TX",
+ alpha=0.3,
+ color="gray")
+ ax.plot(tx_range_new, rx_est_new,
+ label="New Estimated TX",
+ color="red")
+ ax.scatter(tx_dpd, rx_received,
+ label="Binned Data",
+ color="blue",
+ s=0.1)
+ ax.set_title("Model_AM")
+ ax.set_xlabel("RX Amplitude")
+ ax.set_ylabel("TX Amplitude")
+ ax.legend(loc=4)
+
+ fig.tight_layout()
+ fig.savefig(fig_path)
+ fig.clf()
+
+ def poly(self, sig):
+ return np.array([sig ** i for i in range(1, 6)]).T
+
+ def fit_poly(self, tx_abs, rx_abs):
+ return np.linalg.lstsq(self.poly(rx_abs), tx_abs)[0]
+
+ def calc_line(self, coefs, min_amp, max_amp):
+ rx_range = np.linspace(min_amp, max_amp)
+ tx_est = np.sum(self.poly(rx_range) * coefs, axis=1)
+ return tx_est, rx_range
+
+ def get_next_coefs(self, tx_dpd, rx_received, coefs_am):
+ check_input_get_next_coefs(tx_dpd, rx_received)
+
+ coefs_am_new = self.fit_poly(tx_dpd, rx_received)
+ self._plot(tx_dpd, rx_received, coefs_am, coefs_am_new)
+
+ return coefs_am_new
+
+# The MIT License (MIT)
+#
+# Copyright (c) 2017 Andreas Steger
+#
+# Permission is hereby granted, free of charge, to any person obtaining a copy
+# of this software and associated documentation files (the "Software"), to deal
+# in the Software without restriction, including without limitation the rights
+# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+# copies of the Software, and to permit persons to whom the Software is
+# furnished to do so, subject to the following conditions:
+#
+# The above copyright notice and this permission notice shall be included in all
+# copies or substantial portions of the Software.
+#
+# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+# SOFTWARE.