aboutsummaryrefslogtreecommitdiffstats
path: root/dpd
diff options
context:
space:
mode:
authorandreas128 <Andreas>2017-08-29 10:54:19 +0200
committerandreas128 <Andreas>2017-08-29 10:54:19 +0200
commit11d79073f3301d85e6c4314fcca60db30afc0138 (patch)
tree0e6faa7723fc3692c0e3c3cd323397b33226e131 /dpd
parente6ffca1849a56508245d726185344122bf4f873c (diff)
downloaddabmod-11d79073f3301d85e6c4314fcca60db30afc0138.tar.gz
dabmod-11d79073f3301d85e6c4314fcca60db30afc0138.tar.bz2
dabmod-11d79073f3301d85e6c4314fcca60db30afc0138.zip
Fix uniform sampler
Diffstat (limited to 'dpd')
-rw-r--r--dpd/src/Model.py49
1 files changed, 31 insertions, 18 deletions
diff --git a/dpd/src/Model.py b/dpd/src/Model.py
index e0f9c62..ae9f7b3 100644
--- a/dpd/src/Model.py
+++ b/dpd/src/Model.py
@@ -36,12 +36,13 @@ class Model:
tx_hist, ccdf_edges = np.histogram(txframe_aligned_abs,
bins=n_bins,
range=(ccdf_min, ccdf_max))
- tx_choice = np.zeros(tx_hist[-1] * n_bins, dtype=np.complex64)
- rx_choice = np.zeros(tx_hist[-1] * n_bins, dtype=np.complex64)
- n_choise = tx_hist[-1]
- for idx, bin in enumerate(tx_hist[:-1]):
- indices = np.where((txframe_aligned >= ccdf_edges[idx]) &
- (txframe_aligned <= ccdf_edges[idx+1]))[0]
+ n_choise = np.min(tx_hist)
+ tx_choice = np.zeros(n_choise * n_bins, dtype=np.complex64)
+ rx_choice = np.zeros(n_choise * n_bins, dtype=np.complex64)
+
+ for idx, bin in enumerate(tx_hist):
+ indices = np.where((txframe_aligned_abs >= ccdf_edges[idx]) &
+ (txframe_aligned_abs <= ccdf_edges[idx+1]))[0]
indices_choise = np.random.choice(indices, n_choise, replace=False)
rx_choice[idx*n_choise:(idx+1)*n_choise] = rxframe_aligned[indices_choise]
tx_choice[idx*n_choise:(idx+1)*n_choise] = txframe_aligned[indices_choise]
@@ -109,18 +110,6 @@ class Model:
tx_range = np.linspace(0, 2)
phase_range_dpd = dpd_phase(tx_range)
- tx_abs = np.abs(rx_choice)
- tx_A = np.vstack([tx_abs,
- tx_abs ** 3,
- tx_abs ** 5,
- tx_abs ** 7,
- tx_abs ** 9,
- ]).T
- tx_dpd = np.sum(tx_A * new_coefs, axis=1)
-
- tx_dpd_norm = tx_dpd * (
- np.median(np.abs(tx_choice)) / np.median(np.abs(tx_dpd)))
-
rx_A_complex = np.vstack([rx_choice,
rx_choice * rx_abs ** 2,
rx_choice * rx_abs ** 4,
@@ -207,10 +196,34 @@ class Model:
label="RX Frame",
linestyle="--",
linewidth=0.5)
+
+ rx_abs = np.abs(rxframe_aligned)
+ rx_A = np.vstack([rx_abs,
+ rx_abs ** 3,
+ rx_abs ** 5,
+ rx_abs ** 7,
+ rx_abs ** 9,
+ ]).T
+ rx_dpd = np.sum(rx_A * self.coefs_am, axis=1)
+ rx_dpd = rx_dpd * (
+ np.median(np.abs(tx_choice)) / np.median(np.abs(rx_dpd)))
+
ax.plot(np.abs(rx_dpd[:128]),
label="RX DPD Frame",
linestyle="-.",
linewidth=0.5)
+
+ tx_abs = np.abs(np.abs(txframe_aligned[:128]))
+ tx_A = np.vstack([tx_abs,
+ tx_abs ** 3,
+ tx_abs ** 5,
+ tx_abs ** 7,
+ tx_abs ** 9,
+ ]).T
+ tx_dpd = np.sum(tx_A * new_coefs, axis=1)
+ tx_dpd_norm = tx_dpd * (
+ np.median(np.abs(tx_choice)) / np.median(np.abs(tx_dpd)))
+
ax.plot(np.abs(tx_dpd_norm[:128]),
label="TX DPD Frame Norm",
linestyle="-.",