aboutsummaryrefslogtreecommitdiffstats
path: root/dpd
diff options
context:
space:
mode:
authorandreas128 <Andreas>2017-08-22 16:35:22 +0200
committerandreas128 <Andreas>2017-08-22 16:35:22 +0200
commit2f29bec66f0d072934334b0aa5f8094e550a3a8f (patch)
tree0a6b66643f19628b660edc26a70a8f26a9b0badc /dpd
parentd7521876d7cb221860b0975b2a25eedca00206b7 (diff)
downloaddabmod-2f29bec66f0d072934334b0aa5f8094e550a3a8f.tar.gz
dabmod-2f29bec66f0d072934334b0aa5f8094e550a3a8f.tar.bz2
dabmod-2f29bec66f0d072934334b0aa5f8094e550a3a8f.zip
Add iterative dpd
Diffstat (limited to 'dpd')
-rwxr-xr-xdpd/main.py4
-rw-r--r--dpd/src/Model.py160
2 files changed, 126 insertions, 38 deletions
diff --git a/dpd/main.py b/dpd/main.py
index 72026dc..b0b7a87 100755
--- a/dpd/main.py
+++ b/dpd/main.py
@@ -59,7 +59,7 @@ adapt = Adapt.Adapt(port_rc, coef_path)
coefs = adapt.get_coefs()
#model = Model.Model(coefs)
model = Model.Model([2.2, 0, 0, 0, 0])
-adapt.set_txgain(82)
+adapt.set_txgain(84)
tx_gain = adapt.get_txgain()
rx_gain = adapt.get_rxgain()
@@ -70,7 +70,7 @@ logging.info(
)
)
-for i in range(10):
+for i in range(500):
txframe_aligned, tx_ts, rxframe_aligned, rx_ts = meas.get_samples()
logging.debug("tx_ts {}, rx_ts {}".format(tx_ts, rx_ts))
coefs = model.get_next_coefs(txframe_aligned, rxframe_aligned)
diff --git a/dpd/src/Model.py b/dpd/src/Model.py
index 7664dd3..aef112c 100644
--- a/dpd/src/Model.py
+++ b/dpd/src/Model.py
@@ -5,6 +5,7 @@ import os
import logging
logging_path = os.path.dirname(logging.getLoggerClass().root.handlers[0].baseFilename)
+from pynverse import inversefunc
import numpy as np
import matplotlib
matplotlib.use('agg')
@@ -17,32 +18,71 @@ class Model:
def __init__(self, coefs):
self.coefs = coefs
+ self.coefs_history = [coefs,]
+ self.mses = [0,]
+ self.errs = [0,]
def get_next_coefs(self, txframe_aligned, rxframe_aligned):
rx_abs = np.abs(rxframe_aligned)
- A = np.vstack([rx_abs,
+ rx_A = np.vstack([rx_abs,
rx_abs**3,
rx_abs**5,
rx_abs**7,
rx_abs**9,
]).T
- y = np.abs(txframe_aligned)
-
- clf = Ridge(alpha=10)
- clf.fit(A, y)
- sol = clf.coef_
-
- rx_range = np.linspace(0,1,50)
- A_range = np.vstack([
- rx_range,
- rx_range**3,
- rx_range**5,
- rx_range**7,
- rx_range**9,
- ]).T
- y_est = np.sum(A_range * sol, axis=1)
-
- logging.debug("New coefficents {}".format(sol))
+ rx_dpd = np.sum(rx_A * self.coefs, axis=1)
+ rx_dpd = rx_dpd * (
+ np.median(np.abs(txframe_aligned)) / np.median(np.abs(rx_dpd)))
+
+ err = rx_dpd - np.abs(txframe_aligned)
+ self.errs.append(np.mean(np.abs(err**2)))
+
+ a_delta = np.linalg.lstsq(rx_A, err)[0]
+ new_coefs = self.coefs - 0.1 * a_delta
+ logging.debug("a_delta {}".format(a_delta))
+ logging.debug("new coefs {}".format(new_coefs))
+
+ tx_abs = np.abs(rxframe_aligned)
+ tx_A = np.vstack([tx_abs,
+ tx_abs**3,
+ tx_abs**5,
+ tx_abs**7,
+ tx_abs**9,
+ ]).T
+ tx_dpd = np.sum(tx_A * new_coefs, axis=1)
+
+ tx_dpd_norm = tx_dpd * (
+ np.median(np.abs(txframe_aligned)) / np.median(np.abs(tx_dpd)))
+
+ rx_A_complex = np.vstack([rxframe_aligned,
+ rxframe_aligned * rx_abs**2,
+ rxframe_aligned * rx_abs**4,
+ rxframe_aligned * rx_abs**6,
+ rxframe_aligned * rx_abs**8,
+ ]).T
+ rx_post_distored = np.sum(rx_A_complex * self.coefs, axis=1)
+ rx_post_distored = rx_post_distored * (
+ np.median(np.abs(txframe_aligned)) /
+ np.median(np.abs(rx_post_distored)))
+ mse = np.mean(np.abs((txframe_aligned - rx_post_distored)**2))
+ logging.debug("MSE: {}".format(mse))
+ self.mses.append(mse)
+
+ def dpd(tx):
+ tx_abs = np.abs(tx)
+ tx_A_complex = np.vstack([tx,
+ tx * tx_abs**2,
+ tx * tx_abs**4,
+ tx * tx_abs**6,
+ tx * tx_abs**8,
+ ]).T
+ tx_dpd = np.sum(tx_A_complex * self.coefs, axis=1)
+ return tx_dpd
+ tx_inverse_dpd = inversefunc(dpd, y_values=txframe_aligned[:128])
+ tx_inverse_dpd = tx_inverse_dpd * (
+ np.median(np.abs(txframe_aligned)) /
+ np.median(np.abs(tx_inverse_dpd))
+ )
if logging.getLogger().getEffectiveLevel() == logging.DEBUG:
logging.debug("txframe: min %f, max %f, median %f" %
@@ -60,19 +100,33 @@ class Model:
dt = datetime.datetime.now().isoformat()
fig_path = logging_path + "/" + dt + "_Model.pdf"
- fig, axs = plt.subplots(4, figsize=(6,2*6))
+ fig, axs = plt.subplots(7, figsize=(6,3*6))
ax = axs[0]
- ax.plot(np.abs(txframe_aligned[:128]), label="TX Frame")
- ax.plot(np.abs(rxframe_aligned[:128]), label="RX Frame")
- ax.set_title("Synchronized Signals")
+ ax.plot(np.abs(txframe_aligned[:128]),
+ label="TX sent",
+ linestyle=":")
+ ax.plot(np.abs(tx_inverse_dpd[:128]),
+ label="TX inverse dpd",
+ color="green")
+ ax.plot(np.abs(rxframe_aligned[:128]),
+ label="RX received",
+ color="red")
+ ax.set_title("Synchronized Signals of Iteration {}".format(len(self.coefs_history)))
ax.set_xlabel("Samples")
ax.set_ylabel("Amplitude")
ax.legend(loc=4)
ax = axs[1]
- ax.plot(np.real(txframe_aligned[:128]), label="TX Frame")
- ax.plot(np.real(rxframe_aligned[:128]), label="RX Frame")
+ ax.plot(np.real(txframe_aligned[:128]),
+ label="TX sent",
+ linestyle=":")
+ ax.plot(np.real(tx_inverse_dpd[:128]),
+ label="TX inverse dpd",
+ color="green")
+ ax.plot(np.real(rxframe_aligned[:128]),
+ label="RX received",
+ color="red")
ax.set_title("Synchronized Signals")
ax.set_xlabel("Samples")
ax.set_ylabel("Real Part")
@@ -82,13 +136,7 @@ class Model:
ax.scatter(
np.abs(txframe_aligned[:1024]),
np.abs(rxframe_aligned[:1024]),
- s = 0.1
- )
- ax.plot(
- y_est,
- rx_range,
- linewidth=0.25
- )
+ s = 0.1)
ax.set_title("Amplifier Characteristic")
ax.set_xlabel("TX Amplitude")
ax.set_ylabel("RX Amplitude")
@@ -109,15 +157,55 @@ class Model:
ax.set_xlabel("TX Amplitude")
ax.set_ylabel("Phase Difference [deg]")
+ ax = axs[4]
+ ax.plot(np.abs(txframe_aligned[:128]),
+ label="TX Frame",
+ linestyle=":",
+ linewidth=0.5)
+ ax.plot(np.abs(rxframe_aligned[:128]),
+ label="RX Frame",
+ linestyle="--",
+ linewidth=0.5)
+ ax.plot(np.abs(rx_dpd[:128]),
+ label="RX DPD Frame",
+ linestyle="-.",
+ linewidth=0.5)
+ ax.plot(np.abs(tx_dpd_norm[:128]),
+ label="TX DPD Frame Norm",
+ linestyle="-.",
+ linewidth=0.5)
+ ax.legend(loc=4)
+ ax.set_title("RX DPD")
+ ax.set_xlabel("Samples")
+ ax.set_ylabel("Amplitude")
+
+ ax = axs[5]
+ coefs_history = np.array(self.coefs_history)
+ for idx, coef_hist in enumerate(coefs_history.T):
+ ax.plot(coef_hist,
+ label="Coef {}".format(idx),
+ linewidth=0.5)
+ ax.legend(loc=4)
+ ax.set_title("Coefficient History")
+ ax.set_xlabel("Iterations")
+ ax.set_ylabel("Coefficient Value")
+
+ ax = axs[6]
+ coefs_history = np.array(self.coefs_history)
+ ax.plot(self.mses, label="MSE")
+ ax.plot(self.errs, label="ERR")
+ ax.legend(loc=4)
+ ax.set_title("MSE History")
+ ax.set_xlabel("Iterations")
+ ax.set_ylabel("MSE")
+
fig.tight_layout()
fig.savefig(fig_path)
fig.clf()
- mse = np.mean(np.abs(np.square(txframe_aligned[:1024] - rxframe_aligned[:1024])))
- logging.debug("MSE: {}".format(mse))
-
- sol = sol * 1.7/sol[0]
- return sol
+ self.coefs = new_coefs
+ self.coefs_history.append(self.coefs)
+ return self.coefs
# The MIT License (MIT)
#