summaryrefslogtreecommitdiffstats
path: root/dpd/src
diff options
context:
space:
mode:
authorandreas128 <Andreas>2017-09-12 17:46:25 +0200
committerandreas128 <Andreas>2017-09-12 17:46:25 +0200
commitcc4a2fa49620306a16f131a54fbdc965a3d44056 (patch)
treeaac4e0d9f36096e326cf708697ed0437916a5601 /dpd/src
parent92076c98302da1a04fdf4d57d7f07aa46ccde22e (diff)
downloaddabmod-cc4a2fa49620306a16f131a54fbdc965a3d44056.tar.gz
dabmod-cc4a2fa49620306a16f131a54fbdc965a3d44056.tar.bz2
dabmod-cc4a2fa49620306a16f131a54fbdc965a3d44056.zip
Switch to linear regression; Cleanup
Diffstat (limited to 'dpd/src')
-rw-r--r--dpd/src/Model.py24
1 files changed, 13 insertions, 11 deletions
diff --git a/dpd/src/Model.py b/dpd/src/Model.py
index 827027a..1606441 100644
--- a/dpd/src/Model.py
+++ b/dpd/src/Model.py
@@ -15,6 +15,7 @@ import numpy as np
import matplotlib.pyplot as plt
from sklearn import linear_model
+
class Model:
"""Calculates new coefficients using the measurement and the old
coefficients"""
@@ -25,8 +26,8 @@ class Model:
MER,
coefs_am,
coefs_pm,
- learning_rate_am=1.,
- learning_rate_pm=1.,
+ learning_rate_am=0.1,
+ learning_rate_pm=0.1,
plot=False):
self.c = c
self.SA = SA
@@ -122,11 +123,9 @@ class Model:
err = np.abs(rx_dpd) - np.abs(tx_choice)
mse = np.mean(np.abs((rx_dpd - tx_choice) ** 2))
self.mses_am.append(mse)
- self.errs_am.append(np.mean(err**2))
+ self.errs_am.append(np.mean(err ** 2))
- reg = linear_model.Ridge(alpha=0.00001)
- reg.fit(rx_A, err)
- a_delta = reg.coef_
+ a_delta = np.linalg.lstsq(rx_A, err)[0]
new_coefs_am = self.coefs_am - self.learning_rate_am * a_delta
new_coefs_am = new_coefs_am * (self.coefs_am[0] / new_coefs_am[0])
return new_coefs_am
@@ -139,15 +138,13 @@ class Model:
(np.abs(rx_choice) * np.abs(tx_choice))
)
plt.hist(phase_diff_choice)
- plt.savefig('/tmp/hist_' + str(np.random.randint(0,1000)) + '.svg')
+ plt.savefig('/tmp/hist_' + str(np.random.randint(0, 1000)) + '.svg')
plt.clf()
phase_diff_est, phase_A = self.dpd_phase(rx_choice)
err_phase = phase_diff_est - phase_diff_choice
self.errs_pm.append(np.mean(np.abs(err_phase ** 2)))
- reg = linear_model.Ridge(alpha=0.00001)
- reg.fit(phase_A, err_phase)
- p_delta = reg.coef_
+ p_delta = np.linalg.lstsq(phase_A, err_phase)[0]
new_coefs_pm = self.coefs_pm - self.learning_rate_pm * p_delta
return new_coefs_pm, phase_diff_choice
@@ -164,6 +161,11 @@ class Model:
np.median(np.abs(tx_dpd)) + np.median(np.abs(rx_received)))
assert normalization_error < 0.01, "Non normalized signals"
+ if logging.getLogger().getEffectiveLevel() == logging.DEBUG:
+ dt = datetime.datetime.now().isoformat()
+ tx_dpd.tofile(logging_path + "/tx_dpd_" + dt + ".iq")
+ rx_received.tofile(logging_path + "/rx_received_" + dt + ".iq")
+
tx_choice, rx_choice = self.sample_uniformly(tx_dpd, rx_received)
new_coefs_am = self._next_am_coefficent(tx_choice, rx_choice)
new_coefs_pm, phase_diff_choice = self._next_pm_coefficent(tx_choice, rx_choice)
@@ -303,7 +305,7 @@ class Model:
np.rad2deg(phase_range_dpd_new),
linewidth=0.25,
label="next")
- ax.set_ylim(-60, 60)
+ ax.set_ylim(-180, 180)
ax.set_xlim(0, 1)
ax.legend()
ax.set_title("Amplifier Characteristic")