aboutsummaryrefslogtreecommitdiffstats
path: root/dpd/src
diff options
context:
space:
mode:
authorMatthias P. Braendli <matthias.braendli@mpb.li>2017-09-13 18:55:39 +0200
committerMatthias P. Braendli <matthias.braendli@mpb.li>2017-09-13 18:55:39 +0200
commit1ca5368f547c429bf0d86dac78162310e1d2b032 (patch)
tree6c6949b3ecf235ab18a6d21af6d3ad6105190d67 /dpd/src
parent4f9372c130960559a0bba13828a810eb57e30123 (diff)
downloaddabmod-1ca5368f547c429bf0d86dac78162310e1d2b032.tar.gz
dabmod-1ca5368f547c429bf0d86dac78162310e1d2b032.tar.bz2
dabmod-1ca5368f547c429bf0d86dac78162310e1d2b032.zip
Add LUT predistorter
Diffstat (limited to 'dpd/src')
-rw-r--r--dpd/src/Adapt.py89
-rw-r--r--dpd/src/Model.py259
2 files changed, 207 insertions, 141 deletions
diff --git a/dpd/src/Adapt.py b/dpd/src/Adapt.py
index b4042d6..f21bb87 100644
--- a/dpd/src/Adapt.py
+++ b/dpd/src/Adapt.py
@@ -13,6 +13,10 @@ import zmq
import logging
import numpy as np
+LUT_LEN=32
+FORMAT_POLY=1
+FORMAT_LUT=2
+
class Adapt:
"""Uses the ZMQ remote control to change parameters of the DabMod
@@ -126,45 +130,74 @@ class Adapt:
# TODO handle failure
return float(self.send_receive("get gain digital")[0])
- def _read_coef_file(self, path):
+ def get_predistorter(self):
"""Load the coefficients from the file in the format given in the README,
- return ([AM coef], [PM coef])"""
- coefs_am_out = []
- coefs_pm_out = []
- f = open(path, 'r')
+ return ("poly", [AM coef], [PM coef]) or ("lut", scalefactor, [LUT entries])"""
+ f = open(self.coef_path, 'r')
lines = f.readlines()
- n_coefs = int(lines[0])
- coefs = [float(l) for l in lines[1:]]
- i = 0
- for c in coefs:
- if i < n_coefs:
- coefs_am_out.append(c)
- elif i < 2*n_coefs:
- coefs_pm_out.append(c)
- else:
- raise ValueError(
- "Incorrect coef file format: too many coefficients in {}, should be {}, coefs are {}"
- .format(path, n_coefs, coefs))
- i += 1
- f.close()
- return (coefs_am_out, coefs_pm_out)
-
- def get_coefs(self):
- return self._read_coef_file(self.coef_path)
-
- def _write_coef_file(self, coefs_am, coefs_pm, path):
+ predistorter_format = int(lines[0])
+ if predistorter_format == FORMAT_POLY:
+ coefs_am_out = []
+ coefs_pm_out = []
+ n_coefs = int(lines[1])
+ coefs = [float(l) for l in lines[2:]]
+ i = 0
+ for c in coefs:
+ if i < n_coefs:
+ coefs_am_out.append(c)
+ elif i < 2*n_coefs:
+ coefs_pm_out.append(c)
+ else:
+ raise ValueError(
+ "Incorrect coef file format: too many coefficients in {}, should be {}, coefs are {}"
+ .format(path, n_coefs, coefs))
+ i += 1
+ f.close()
+ return ("poly", coefs_am_out, coefs_pm_out)
+ elif predistorter_format == FORMAT_LUT:
+ scalefactor = int(lines[1])
+ coefs = np.array([float(l) for l in lines[2:]], dtype=np.float32)
+ coefs = coefs.reshape((-1, 2))
+ lut = coefs[..., 0] + 1j * coefs[..., 1]
+ if len(lut) != LUT_LEN:
+ raise ValueError("Incorrect number of LUT entries ({} expected {})".format(len(lut), LUT_LEN))
+ return ("lut", scalefactor, lut)
+ else:
+ raise ValueError("Unknown predistorter format {}".format(predistorter_format))
+
+ def _write_poly_coef_file(self, coefs_am, coefs_pm, path):
assert(len(coefs_am) == len(coefs_pm))
f = open(path, 'w')
- f.write("{}\n".format(len(coefs_am)))
+ f.write("{}\n{}\n".format(FORMAT_POLY, len(coefs_am)))
for coef in coefs_am:
f.write("{}\n".format(coef))
for coef in coefs_pm:
f.write("{}\n".format(coef))
f.close()
- def set_coefs(self, coefs_am, coefs_pm):
- self._write_coef_file(coefs_am, coefs_pm, self.coef_path)
+ def _write_lut_file(self, scalefactor, lut, path):
+ assert(len(lut) == LUT_LEN)
+
+ f = open(path, 'w')
+ f.write("{}\n{}\n".format(FORMAT_LUT, scalefactor))
+ for coef in lut:
+ f.write("{}\n{}\n".format(coef.real, coef.imag))
+ f.close()
+
+ def set_predistorter(self, dpddata):
+ """Update the predistorter data in the modulator. Takes the same
+ tuple format as argument than the one returned get_predistorter()"""
+ if dpddata[0] == "poly":
+ coefs_am = dpddata[1]
+ coefs_pm = dpddata[2]
+ self._write_poly_coef_file(coefs_am, coefs_pm, self.coef_path)
+ elif dpddata[0] == "lut":
+ scalefactor = dpddata[1]
+ lut = dpddata[2]
+ self._write_lut_file(scalefactor, lut, self.coef_path)
+ else:
+ raise ValueError("Unknown predistorter '{}'".format(dpddata[0]))
self.send_receive("set memlesspoly coeffile {}".format(self.coef_path))
# The MIT License (MIT)
diff --git a/dpd/src/Model.py b/dpd/src/Model.py
index 827027a..a23f0ce 100644
--- a/dpd/src/Model.py
+++ b/dpd/src/Model.py
@@ -15,7 +15,7 @@ import numpy as np
import matplotlib.pyplot as plt
from sklearn import linear_model
-class Model:
+class PolyModel:
"""Calculates new coefficients using the measurement and the old
coefficients"""
@@ -28,6 +28,7 @@ class Model:
learning_rate_am=1.,
learning_rate_pm=1.,
plot=False):
+ logging.debug("Initialising Poly Model")
self.c = c
self.SA = SA
self.MER = MER
@@ -35,7 +36,10 @@ class Model:
self.learning_rate_am = learning_rate_am
self.learning_rate_pm = learning_rate_pm
- self.coefs_am = coefs_am
+ if coefs_am is None:
+ self.coefs_am = [1.0, 0, 0, 0, 0]
+ else:
+ self.coefs_am = coefs_am
self.coefs_am_history = [coefs_am, ]
self.mses_am = []
self.errs_am = []
@@ -43,116 +47,17 @@ class Model:
self.tx_mers = []
self.rx_mers = []
- self.coefs_pm = coefs_pm
+ if coefs_pm is None:
+ self.coefs_pm = [0, 0, 0, 0, 0]
+ else:
+ self.coefs_pm = coefs_pm
self.coefs_pm_history = [coefs_pm, ]
self.errs_pm = []
self.plot = plot
- def sample_uniformly(self, tx_dpd, rx_received, n_bins=5):
- """This function returns tx and rx samples in a way
- that the tx amplitudes have an approximate uniform
- distribution with respect to the tx_dpd amplitudes"""
- mask = np.logical_and((np.abs(tx_dpd) > 0.01), (np.abs(rx_received) > 0.01))
- tx_dpd = tx_dpd[mask]
- rx_received = rx_received[mask]
-
- txframe_aligned_abs = np.abs(tx_dpd)
- ccdf_min = 0
- ccdf_max = np.max(txframe_aligned_abs)
- tx_hist, ccdf_edges = np.histogram(txframe_aligned_abs,
- bins=n_bins,
- range=(ccdf_min, ccdf_max))
- n_choise = np.min(tx_hist)
- tx_choice = np.zeros(n_choise * n_bins, dtype=np.complex64)
- rx_choice = np.zeros(n_choise * n_bins, dtype=np.complex64)
-
- for idx, bin in enumerate(tx_hist):
- indices = np.where((txframe_aligned_abs >= ccdf_edges[idx]) &
- (txframe_aligned_abs <= ccdf_edges[idx + 1]))[0]
- indices_choise = np.random.choice(indices,
- n_choise,
- replace=False)
- rx_choice[idx * n_choise:(idx + 1) * n_choise] = \
- rx_received[indices_choise]
- tx_choice[idx * n_choise:(idx + 1) * n_choise] = \
- tx_dpd[indices_choise]
-
- assert isinstance(rx_choice[0], np.complex64), \
- "rx_choice is not complex64 but {}".format(rx_choice[0].dtype)
- assert isinstance(tx_choice[0], np.complex64), \
- "tx_choice is not complex64 but {}".format(tx_choice[0].dtype)
-
- return tx_choice, rx_choice
-
- def dpd_amplitude(self, sig, coefs=None):
- if coefs is None:
- coefs = self.coefs_am
- assert isinstance(sig[0], np.complex64), "Sig is not complex64 but {}".format(sig[0].dtype)
- sig_abs = np.abs(sig)
- A_sig = np.vstack([np.ones(sig_abs.shape),
- sig_abs ** 1,
- sig_abs ** 2,
- sig_abs ** 3,
- sig_abs ** 4,
- ]).T
- sig_dpd = sig * np.sum(A_sig * coefs, axis=1)
- return sig_dpd, A_sig
-
- def dpd_phase(self, sig, coefs=None):
- if coefs is None:
- coefs = self.coefs_pm
- assert isinstance(sig[0], np.complex64), "Sig is not complex64 but {}".format(sig[0].dtype)
- sig_abs = np.abs(sig)
- A_phase = np.vstack([np.ones(sig_abs.shape),
- sig_abs ** 1,
- sig_abs ** 2,
- sig_abs ** 3,
- sig_abs ** 4,
- ]).T
- phase_diff_est = np.sum(A_phase * coefs, axis=1)
- return phase_diff_est, A_phase
-
- def _next_am_coefficent(self, tx_choice, rx_choice):
- """Calculate new coefficients for AM/AM correction"""
- rx_dpd, rx_A = self.dpd_amplitude(rx_choice)
- rx_dpd = rx_dpd * (
- np.median(np.abs(tx_choice)) /
- np.median(np.abs(rx_dpd)))
- err = np.abs(rx_dpd) - np.abs(tx_choice)
- mse = np.mean(np.abs((rx_dpd - tx_choice) ** 2))
- self.mses_am.append(mse)
- self.errs_am.append(np.mean(err**2))
-
- reg = linear_model.Ridge(alpha=0.00001)
- reg.fit(rx_A, err)
- a_delta = reg.coef_
- new_coefs_am = self.coefs_am - self.learning_rate_am * a_delta
- new_coefs_am = new_coefs_am * (self.coefs_am[0] / new_coefs_am[0])
- return new_coefs_am
-
- def _next_pm_coefficent(self, tx_choice, rx_choice):
- """Calculate new coefficients for AM/PM correction
- Assuming deviations smaller than pi/2"""
- phase_diff_choice = np.angle(
- (rx_choice * tx_choice.conjugate()) /
- (np.abs(rx_choice) * np.abs(tx_choice))
- )
- plt.hist(phase_diff_choice)
- plt.savefig('/tmp/hist_' + str(np.random.randint(0,1000)) + '.svg')
- plt.clf()
- phase_diff_est, phase_A = self.dpd_phase(rx_choice)
- err_phase = phase_diff_est - phase_diff_choice
- self.errs_pm.append(np.mean(np.abs(err_phase ** 2)))
-
- reg = linear_model.Ridge(alpha=0.00001)
- reg.fit(phase_A, err_phase)
- p_delta = reg.coef_
- new_coefs_pm = self.coefs_pm - self.learning_rate_pm * p_delta
-
- return new_coefs_pm, phase_diff_choice
-
- def get_next_coefs(self, tx_dpd, rx_received):
+ def train(self, tx_dpd, rx_received):
+ """Give new training data to the model"""
# Check data type
assert tx_dpd[0].dtype == np.complex64, \
"tx_dpd is not complex64 but {}".format(tx_dpd[0].dtype)
@@ -164,7 +69,7 @@ class Model:
np.median(np.abs(tx_dpd)) + np.median(np.abs(rx_received)))
assert normalization_error < 0.01, "Non normalized signals"
- tx_choice, rx_choice = self.sample_uniformly(tx_dpd, rx_received)
+ tx_choice, rx_choice = self._sample_uniformly(tx_dpd, rx_received)
new_coefs_am = self._next_am_coefficent(tx_choice, rx_choice)
new_coefs_pm, phase_diff_choice = self._next_pm_coefficent(tx_choice, rx_choice)
@@ -255,8 +160,8 @@ class Model:
ax = plt.subplot(4, 2, i_sub)
rx_range = np.linspace(0, 1, num=100, dtype=np.complex64)
- rx_range_dpd = self.dpd_amplitude(rx_range)[0]
- rx_range_dpd_new = self.dpd_amplitude(rx_range, new_coefs_am)[0]
+ rx_range_dpd = self._dpd_amplitude(rx_range)[0]
+ rx_range_dpd_new = self._dpd_amplitude(rx_range, new_coefs_am)[0]
i_sub += 1
ax.scatter(
np.abs(tx_choice),
@@ -284,8 +189,8 @@ class Model:
ax.set_ylabel("Coefficient Value")
phase_range = np.linspace(0, 1, num=100, dtype=np.complex64)
- phase_range_dpd = self.dpd_phase(phase_range)[0]
- phase_range_dpd_new = self.dpd_phase(phase_range,
+ phase_range_dpd = self._dpd_phase(phase_range)[0]
+ phase_range_dpd_new = self._dpd_phase(phase_range,
coefs=new_coefs_pm)[0]
ax = plt.subplot(4, 2, i_sub)
i_sub += 1
@@ -330,11 +235,139 @@ class Model:
self.coefs_am_history.append(self.coefs_am)
self.coefs_pm = new_coefs_pm
self.coefs_pm_history.append(self.coefs_pm)
- return self.coefs_am, self.coefs_pm
+
+ def get_dpd_data(self):
+ return "poly", self.coefs_am, self.coefs_pm
+
+ def _sample_uniformly(self, tx_dpd, rx_received, n_bins=5):
+ """This function returns tx and rx samples in a way
+ that the tx amplitudes have an approximate uniform
+ distribution with respect to the tx_dpd amplitudes"""
+ mask = np.logical_and((np.abs(tx_dpd) > 0.01), (np.abs(rx_received) > 0.01))
+ tx_dpd = tx_dpd[mask]
+ rx_received = rx_received[mask]
+
+ txframe_aligned_abs = np.abs(tx_dpd)
+ ccdf_min = 0
+ ccdf_max = np.max(txframe_aligned_abs)
+ tx_hist, ccdf_edges = np.histogram(txframe_aligned_abs,
+ bins=n_bins,
+ range=(ccdf_min, ccdf_max))
+ n_choise = np.min(tx_hist)
+ tx_choice = np.zeros(n_choise * n_bins, dtype=np.complex64)
+ rx_choice = np.zeros(n_choise * n_bins, dtype=np.complex64)
+
+ for idx, bin in enumerate(tx_hist):
+ indices = np.where((txframe_aligned_abs >= ccdf_edges[idx]) &
+ (txframe_aligned_abs <= ccdf_edges[idx + 1]))[0]
+ indices_choise = np.random.choice(indices,
+ n_choise,
+ replace=False)
+ rx_choice[idx * n_choise:(idx + 1) * n_choise] = \
+ rx_received[indices_choise]
+ tx_choice[idx * n_choise:(idx + 1) * n_choise] = \
+ tx_dpd[indices_choise]
+
+ assert isinstance(rx_choice[0], np.complex64), \
+ "rx_choice is not complex64 but {}".format(rx_choice[0].dtype)
+ assert isinstance(tx_choice[0], np.complex64), \
+ "tx_choice is not complex64 but {}".format(tx_choice[0].dtype)
+
+ return tx_choice, rx_choice
+
+ def _dpd_amplitude(self, sig, coefs=None):
+ if coefs is None:
+ coefs = self.coefs_am
+ assert isinstance(sig[0], np.complex64), "Sig is not complex64 but {}".format(sig[0].dtype)
+ sig_abs = np.abs(sig)
+ A_sig = np.vstack([np.ones(sig_abs.shape),
+ sig_abs ** 1,
+ sig_abs ** 2,
+ sig_abs ** 3,
+ sig_abs ** 4,
+ ]).T
+ sig_dpd = sig * np.sum(A_sig * coefs, axis=1)
+ return sig_dpd, A_sig
+
+ def _dpd_phase(self, sig, coefs=None):
+ if coefs is None:
+ coefs = self.coefs_pm
+ assert isinstance(sig[0], np.complex64), "Sig is not complex64 but {}".format(sig[0].dtype)
+ sig_abs = np.abs(sig)
+ A_phase = np.vstack([np.ones(sig_abs.shape),
+ sig_abs ** 1,
+ sig_abs ** 2,
+ sig_abs ** 3,
+ sig_abs ** 4,
+ ]).T
+ phase_diff_est = np.sum(A_phase * coefs, axis=1)
+ return phase_diff_est, A_phase
+
+ def _next_am_coefficent(self, tx_choice, rx_choice):
+ """Calculate new coefficients for AM/AM correction"""
+ rx_dpd, rx_A = self._dpd_amplitude(rx_choice)
+ rx_dpd = rx_dpd * (
+ np.median(np.abs(tx_choice)) /
+ np.median(np.abs(rx_dpd)))
+ err = np.abs(rx_dpd) - np.abs(tx_choice)
+ mse = np.mean(np.abs((rx_dpd - tx_choice) ** 2))
+ self.mses_am.append(mse)
+ self.errs_am.append(np.mean(err**2))
+
+ reg = linear_model.Ridge(alpha=0.00001)
+ reg.fit(rx_A, err)
+ a_delta = reg.coef_
+ new_coefs_am = self.coefs_am - self.learning_rate_am * a_delta
+ new_coefs_am = new_coefs_am * (self.coefs_am[0] / new_coefs_am[0])
+ return new_coefs_am
+
+ def _next_pm_coefficent(self, tx_choice, rx_choice):
+ """Calculate new coefficients for AM/PM correction
+ Assuming deviations smaller than pi/2"""
+ phase_diff_choice = np.angle(
+ (rx_choice * tx_choice.conjugate()) /
+ (np.abs(rx_choice) * np.abs(tx_choice))
+ )
+ plt.hist(phase_diff_choice)
+ plt.savefig('/tmp/hist_' + str(np.random.randint(0,1000)) + '.svg')
+ plt.clf()
+ phase_diff_est, phase_A = self._dpd_phase(rx_choice)
+ err_phase = phase_diff_est - phase_diff_choice
+ self.errs_pm.append(np.mean(np.abs(err_phase ** 2)))
+
+ reg = linear_model.Ridge(alpha=0.00001)
+ reg.fit(phase_A, err_phase)
+ p_delta = reg.coef_
+ new_coefs_pm = self.coefs_pm - self.learning_rate_pm * p_delta
+
+ return new_coefs_pm, phase_diff_choice
+
+class LutModel:
+ """Implements a model that calculates lookup table coefficients"""
+
+ def __init__(self,
+ c,
+ SA,
+ MER,
+ learning_rate=1.,
+ plot=False):
+ logging.debug("Initialising LUT Model")
+ self.c = c
+ self.SA = SA
+ self.MER = MER
+ self.learning_rate = learning_rate
+ self.plot = plot
+
+ def train(self, tx_dpd, rx_received):
+ pass
+
+ def get_dpd_data(self):
+ return ("lut", np.ones(32, dtype=np.complex64))
# The MIT License (MIT)
#
# Copyright (c) 2017 Andreas Steger
+# Copyright (c) 2017 Matthias P. Braendli
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal