diff options
author | andreas128 <Andreas> | 2017-08-04 21:58:31 +0100 |
---|---|---|
committer | andreas128 <Andreas> | 2017-08-04 21:58:31 +0100 |
commit | 38f171903a897d4b77b8d54d9cac772ccb8791c2 (patch) | |
tree | f05880a77e257deca864fdb0ff88ffe99eba09c6 /dpd/src/subsample_align.py | |
parent | fe0c8e9f09e8562ba919661b8246351f4eb0a03c (diff) | |
download | dabmod-38f171903a897d4b77b8d54d9cac772ccb8791c2.tar.gz dabmod-38f171903a897d4b77b8d54d9cac772ccb8791c2.tar.bz2 dabmod-38f171903a897d4b77b8d54d9cac772ccb8791c2.zip |
Add main.py and basic functions to get measurement
Diffstat (limited to 'dpd/src/subsample_align.py')
-rwxr-xr-x | dpd/src/subsample_align.py | 74 |
1 files changed, 74 insertions, 0 deletions
diff --git a/dpd/src/subsample_align.py b/dpd/src/subsample_align.py new file mode 100755 index 0000000..c30af7c --- /dev/null +++ b/dpd/src/subsample_align.py @@ -0,0 +1,74 @@ +import numpy as np +from scipy import signal, optimize +import sys +import matplotlib.pyplot as plt + +def gen_omega(length): + if (length % 2) == 1: + raise ValueError("Needs an even length array.") + + halflength = int(length/2) + factor = 2.0 * np.pi / length + + omega = np.zeros(length, dtype=np.float) + for i in range(halflength): + omega[i] = factor * i + + for i in range(halflength, length): + omega[i] = factor * (i - length) + + return omega + +def subsample_align(sig, ref_sig): + """Do subsample alignment for sig relative to the reference signal + ref_sig. The delay between the two must be less than sample + + Returns the aligned signal""" + + n = len(sig) + if (n % 2) == 1: + raise ValueError("Needs an even length signal.") + halflen = int(n/2) + + fft_sig = np.fft.fft(sig) + + omega = gen_omega(n) + + def correlate_for_delay(tau): + # A subsample offset between two signals corresponds, in the frequency + # domain, to a linearly increasing phase shift, whose slope + # corresponds to the delay. + # + # Here, we build this phase shift in rotate_vec, and multiply it with + # our signal. + + rotate_vec = np.exp(1j * tau * omega) + # zero-frequency is rotate_vec[0], so rotate_vec[N/2] is the + # bin corresponding to the [-1, 1, -1, 1, ...] time signal, which + # is both the maximum positive and negative frequency. + # I don't remember why we handle it differently. + rotate_vec[halflen] = np.cos(np.pi * tau) + + corr_sig = np.fft.ifft(rotate_vec * fft_sig) + + # TODO why do we only look at the real part? Because it's faster than + # a complex cross-correlation? Clarify! + return -np.sum(np.real(corr_sig) * np.real(ref_sig.real)) + + optim_result = optimize.minimize_scalar(correlate_for_delay, bounds=(-1,1), method='bounded', options={'disp': True}) + + if optim_result.success: + #print("x:") + #print(optim_result.x) + + best_tau = optim_result.x + + #print("Found subsample delay = {}".format(best_tau)) + + # Prepare rotate_vec = fft_sig with rotated phase + rotate_vec = np.exp(1j * best_tau * omega) + rotate_vec[halflen] = np.cos(np.pi * best_tau) + return np.fft.ifft(rotate_vec * fft_sig).astype(np.complex64) + else: + #print("Could not optimize: " + optim_result.message) + return np.zeros(0, dtype=np.complex64) |