aboutsummaryrefslogtreecommitdiffstats
path: root/dpd/src/subsample_align.py
diff options
context:
space:
mode:
authorandreas128 <Andreas>2017-08-04 21:58:31 +0100
committerandreas128 <Andreas>2017-08-04 21:58:31 +0100
commit38f171903a897d4b77b8d54d9cac772ccb8791c2 (patch)
treef05880a77e257deca864fdb0ff88ffe99eba09c6 /dpd/src/subsample_align.py
parentfe0c8e9f09e8562ba919661b8246351f4eb0a03c (diff)
downloaddabmod-38f171903a897d4b77b8d54d9cac772ccb8791c2.tar.gz
dabmod-38f171903a897d4b77b8d54d9cac772ccb8791c2.tar.bz2
dabmod-38f171903a897d4b77b8d54d9cac772ccb8791c2.zip
Add main.py and basic functions to get measurement
Diffstat (limited to 'dpd/src/subsample_align.py')
-rwxr-xr-xdpd/src/subsample_align.py74
1 files changed, 74 insertions, 0 deletions
diff --git a/dpd/src/subsample_align.py b/dpd/src/subsample_align.py
new file mode 100755
index 0000000..c30af7c
--- /dev/null
+++ b/dpd/src/subsample_align.py
@@ -0,0 +1,74 @@
+import numpy as np
+from scipy import signal, optimize
+import sys
+import matplotlib.pyplot as plt
+
+def gen_omega(length):
+ if (length % 2) == 1:
+ raise ValueError("Needs an even length array.")
+
+ halflength = int(length/2)
+ factor = 2.0 * np.pi / length
+
+ omega = np.zeros(length, dtype=np.float)
+ for i in range(halflength):
+ omega[i] = factor * i
+
+ for i in range(halflength, length):
+ omega[i] = factor * (i - length)
+
+ return omega
+
+def subsample_align(sig, ref_sig):
+ """Do subsample alignment for sig relative to the reference signal
+ ref_sig. The delay between the two must be less than sample
+
+ Returns the aligned signal"""
+
+ n = len(sig)
+ if (n % 2) == 1:
+ raise ValueError("Needs an even length signal.")
+ halflen = int(n/2)
+
+ fft_sig = np.fft.fft(sig)
+
+ omega = gen_omega(n)
+
+ def correlate_for_delay(tau):
+ # A subsample offset between two signals corresponds, in the frequency
+ # domain, to a linearly increasing phase shift, whose slope
+ # corresponds to the delay.
+ #
+ # Here, we build this phase shift in rotate_vec, and multiply it with
+ # our signal.
+
+ rotate_vec = np.exp(1j * tau * omega)
+ # zero-frequency is rotate_vec[0], so rotate_vec[N/2] is the
+ # bin corresponding to the [-1, 1, -1, 1, ...] time signal, which
+ # is both the maximum positive and negative frequency.
+ # I don't remember why we handle it differently.
+ rotate_vec[halflen] = np.cos(np.pi * tau)
+
+ corr_sig = np.fft.ifft(rotate_vec * fft_sig)
+
+ # TODO why do we only look at the real part? Because it's faster than
+ # a complex cross-correlation? Clarify!
+ return -np.sum(np.real(corr_sig) * np.real(ref_sig.real))
+
+ optim_result = optimize.minimize_scalar(correlate_for_delay, bounds=(-1,1), method='bounded', options={'disp': True})
+
+ if optim_result.success:
+ #print("x:")
+ #print(optim_result.x)
+
+ best_tau = optim_result.x
+
+ #print("Found subsample delay = {}".format(best_tau))
+
+ # Prepare rotate_vec = fft_sig with rotated phase
+ rotate_vec = np.exp(1j * best_tau * omega)
+ rotate_vec[halflen] = np.cos(np.pi * best_tau)
+ return np.fft.ifft(rotate_vec * fft_sig).astype(np.complex64)
+ else:
+ #print("Could not optimize: " + optim_result.message)
+ return np.zeros(0, dtype=np.complex64)