aboutsummaryrefslogtreecommitdiffstats
path: root/dpd/src/const.py
diff options
context:
space:
mode:
authorandreas128 <Andreas>2017-09-27 12:46:59 +0200
committerandreas128 <Andreas>2017-09-27 12:46:59 +0200
commit38e4b3a35d4265844641d4527d8952080c0d0d79 (patch)
treef6da95f61913a06213087a7f021a67f9ee6a388f /dpd/src/const.py
parent9434dcbc564526232667d7c547ee40bf72d631b4 (diff)
downloaddabmod-38e4b3a35d4265844641d4527d8952080c0d0d79.tar.gz
dabmod-38e4b3a35d4265844641d4527d8952080c0d0d79.tar.bz2
dabmod-38e4b3a35d4265844641d4527d8952080c0d0d79.zip
Renamed const.py
Diffstat (limited to 'dpd/src/const.py')
-rw-r--r--dpd/src/const.py82
1 files changed, 0 insertions, 82 deletions
diff --git a/dpd/src/const.py b/dpd/src/const.py
deleted file mode 100644
index d95d0bf..0000000
--- a/dpd/src/const.py
+++ /dev/null
@@ -1,82 +0,0 @@
-# DAB Frame constants
-# Sources:
-# - etsi_EN_300_401_v010401p p145
-# - Measured with USRP B200
-
-import numpy as np
-
-class const:
- def __init__(self, sample_rate, target_median):
- self.sample_rate = sample_rate
-
- # Time domain
- self.T_F = sample_rate / 2048000 * 196608 # Transmission frame duration
- self.T_NULL = sample_rate / 2048000 * 2656 # Null symbol duration
- self.T_S = sample_rate / 2048000 * 2552 # Duration of OFDM symbols of indices l = 1, 2, 3,... L;
- self.T_U = sample_rate / 2048000 * 2048 # Inverse of carrier spacing
- self.T_C = sample_rate / 2048000 * 504 # Duration of cyclic prefix
-
- # Frequency Domain
- # example: np.delete(fft[3328:4865], 768)
- self.FFT_delete = 768
- self.FFT_delta = 1536 # Number of carrier frequencies
- if sample_rate == 2048000:
- self.FFT_start = 256
- self.FFT_end = 1793
- elif sample_rate == 8192000:
- self.FFT_start = 3328
- self.FFT_end = 4865
- else:
- raise RuntimeError("Sample Rate '{}' not supported".format(
- sample_rate
- ))
-
- # Calculate sample offset from phase rotation
- # time per sample = 1 / sample_rate
- # frequency per bin = 1kHz
- # phase difference per sample offset = delta_t * 2 * pi * delta_freq
- self.phase_offset_per_sample = 1. / sample_rate * 2 * np.pi * 1000
-
- # Constants for ExtractStatistic
- self.ES_plot = True
- self.ES_start = 0.0
- self.ES_end = 1.0
- self.ES_n_bins = 64
- self.ES_n_per_bin = 128
-
- # Constants for TX_Agc
- self.TAGC_max_txgain = 89
- self.TAGC_tx_median_target = target_median
- self.TAGC_tx_median_max = self.TAGC_tx_median_target*1.4
- self.TAGC_tx_median_min = self.TAGC_tx_median_target/1.4
-
- # Constants for Agc
- self.RAGC_min_rxgain = 25
- self.RAGC_rx_median_target = self.TAGC_tx_median_target
-
- # Constants for Model
- self.MDL_plot = True
-
- # Constants for MER
- self.MER_plot = True
-
- # Constants for Model_PM
- self.MPM_tx_min = 0.1
-
- # Constants for Measure_Shoulder
- self.MS_plot = True
- assert sample_rate==8192000
- meas_offset = 976 # Offset from center frequency to measure shoulder [kHz]
- meas_width = 100 # Size of frequency delta to measure shoulder [kHz]
- shoulder_offset_edge = np.abs(meas_offset - self.FFT_delta)
- self.MS_shoulder_left_start = self.FFT_start - shoulder_offset_edge - meas_width / 2
- self.MS_shoulder_left_end = self.FFT_start - shoulder_offset_edge + meas_width / 2
- self.MS_shoulder_right_start = self.FFT_end + shoulder_offset_edge - meas_width / 2
- self.MS_shoulder_right_end = self.FFT_end + shoulder_offset_edge + meas_width / 2
- self.MS_peak_start = self.FFT_start + 100 # Ignore region near edges
- self.MS_peak_end = self.FFT_end - 100
-
- self.MS_FFT_size = 8192
- self.MS_averaging_size = 4 * self.MS_FFT_size
- self.MS_n_averaging = 40
- self.MS_n_proc = 4