summaryrefslogtreecommitdiffstats
path: root/dpd/src/Measure_Shoulders.py
diff options
context:
space:
mode:
authorandreas128 <Andreas>2017-09-29 18:50:41 +0200
committerandreas128 <Andreas>2017-09-29 18:50:41 +0200
commit5e3ca125bfc56d31b9c9ef819eab9171b73b7333 (patch)
tree297d400f754742faf6bfc4fc7eff9858163c845c /dpd/src/Measure_Shoulders.py
parent64e0193824262e93e7cd67bb8c3af68d278f990c (diff)
downloaddabmod-5e3ca125bfc56d31b9c9ef819eab9171b73b7333.tar.gz
dabmod-5e3ca125bfc56d31b9c9ef819eab9171b73b7333.tar.bz2
dabmod-5e3ca125bfc56d31b9c9ef819eab9171b73b7333.zip
Cleanup
Diffstat (limited to 'dpd/src/Measure_Shoulders.py')
-rw-r--r--dpd/src/Measure_Shoulders.py37
1 files changed, 21 insertions, 16 deletions
diff --git a/dpd/src/Measure_Shoulders.py b/dpd/src/Measure_Shoulders.py
index 7d48a2b..4cf7d0d 100644
--- a/dpd/src/Measure_Shoulders.py
+++ b/dpd/src/Measure_Shoulders.py
@@ -1,6 +1,6 @@
# -*- coding: utf-8 -*-
#
-# DPD Calculation Engine, calculate peak to shoulder difference
+# DPD Calculation Engine, calculate peak to shoulder difference.
#
# http://www.opendigitalradio.org
# Licence: The MIT License, see notice at the end of this file
@@ -15,28 +15,35 @@ logging_path = os.path.dirname(logging.getLoggerClass().root.handlers[0].baseFil
import numpy as np
import matplotlib.pyplot as plt
+
def plt_next_axis(sub_rows, sub_cols, i_sub):
i_sub += 1
ax = plt.subplot(sub_rows, sub_cols, i_sub)
return i_sub, ax
-def plt_annotate(ax, x,y,title=None,legend_loc=None):
+
+def plt_annotate(ax, x, y, title=None, legend_loc=None):
ax.set_xlabel(x)
ax.set_ylabel(y)
- if title is not None: ax.set_title(title)
- if legend_loc is not None: ax.legend(loc=legend_loc)
+ if title is not None:
+ ax.set_title(title)
+ if legend_loc is not None:
+ ax.legend(loc=legend_loc)
+
def calc_fft_db(signal, offset, c):
fft = np.fft.fftshift(np.fft.fft(signal[offset:offset + c.MS_FFT_size]))
fft_db = 20 * np.log10(np.abs(fft))
return fft_db
+
def _calc_peak(fft, c):
assert fft.shape == (c.MS_FFT_size,), fft.shape
idxs = (c.MS_peak_start, c.MS_peak_end)
peak = np.mean(fft[idxs[0]:idxs[1]])
return peak, idxs
+
def _calc_shoulder_hight(fft_db, c):
assert fft_db.shape == (c.MS_FFT_size,), fft_db.shape
idxs_left = (c.MS_shoulder_left_start, c.MS_shoulder_left_end)
@@ -48,26 +55,26 @@ def _calc_shoulder_hight(fft_db, c):
shoulder = np.mean((shoulder_left, shoulder_right))
return shoulder, (idxs_left, idxs_right)
+
def calc_shoulder(fft, c):
peak = _calc_peak(fft, c)[0]
shoulder = _calc_shoulder_hight(fft, c)[0]
assert (peak >= shoulder), (peak, shoulder)
return peak, shoulder
+
def shoulder_from_sig_offset(arg):
signal, offset, c = arg
fft_db = calc_fft_db(signal, offset, c)
peak, shoulder = calc_shoulder(fft_db, c)
- return peak-shoulder, peak, shoulder
+ return peak - shoulder, peak, shoulder
class Measure_Shoulders:
"""Calculate difference between the DAB signal and the shoulder hight in the
power spectrum"""
- def __init__(self,
- c,
- plot=False):
+ def __init__(self, c):
self.c = c
self.plot = c.MS_plot
@@ -75,9 +82,9 @@ class Measure_Shoulders:
dt = datetime.datetime.now().isoformat()
fig_path = logging_path + "/" + dt + "_sync_subsample_aligned.svg"
- fft = calc_fft_db(signal, 100, 10)
- peak, idxs_peak = self._calc_peak(fft)
- shoulder, idxs_sh = self._calc_shoulder_hight(fft, self.c)
+ fft = calc_fft_db(signal, 100, self.c)
+ peak, idxs_peak = _calc_peak(fft, self.c)
+ shoulder, idxs_sh = _calc_shoulder_hight(fft, self.c)
sub_rows = 1
sub_cols = 1
@@ -93,7 +100,7 @@ class Measure_Shoulders:
ax.plot(idxs_sh[1], (shoulder, shoulder), color='blue')
plt_annotate(ax, "Frequency", "Magnitude [dB]", None, 4)
- ax.text(100, -17, str(self.calc_shoulder(fft, self.c)))
+ ax.text(100, -17, str(calc_shoulder(fft, self.c)))
ax.set_ylim(-20, 30)
fig.tight_layout()
@@ -106,14 +113,13 @@ class Measure_Shoulders:
return None
assert signal.shape[0] > 4 * self.c.MS_FFT_size
- if n_avg is None: n_avg = self.c.MS_averaging_size
+ if n_avg is None:
+ n_avg = self.c.MS_averaging_size
off_min = 0
off_max = signal.shape[0] - self.c.MS_FFT_size
offsets = np.linspace(off_min, off_max, num=n_avg, dtype=int)
- shoulders = []
-
args = zip(
[signal, ] * offsets.shape[0],
offsets,
@@ -129,7 +135,6 @@ class Measure_Shoulders:
return np.mean(shoulders_diff), np.mean(shoulders), np.mean(peaks)
-
# The MIT License (MIT)
#
# Copyright (c) 2017 Andreas Steger