diff options
author | andreas128 <Andreas> | 2017-09-29 18:50:41 +0200 |
---|---|---|
committer | andreas128 <Andreas> | 2017-09-29 18:50:41 +0200 |
commit | 5e3ca125bfc56d31b9c9ef819eab9171b73b7333 (patch) | |
tree | 297d400f754742faf6bfc4fc7eff9858163c845c /dpd/src/Measure_Shoulders.py | |
parent | 64e0193824262e93e7cd67bb8c3af68d278f990c (diff) | |
download | dabmod-5e3ca125bfc56d31b9c9ef819eab9171b73b7333.tar.gz dabmod-5e3ca125bfc56d31b9c9ef819eab9171b73b7333.tar.bz2 dabmod-5e3ca125bfc56d31b9c9ef819eab9171b73b7333.zip |
Cleanup
Diffstat (limited to 'dpd/src/Measure_Shoulders.py')
-rw-r--r-- | dpd/src/Measure_Shoulders.py | 37 |
1 files changed, 21 insertions, 16 deletions
diff --git a/dpd/src/Measure_Shoulders.py b/dpd/src/Measure_Shoulders.py index 7d48a2b..4cf7d0d 100644 --- a/dpd/src/Measure_Shoulders.py +++ b/dpd/src/Measure_Shoulders.py @@ -1,6 +1,6 @@ # -*- coding: utf-8 -*- # -# DPD Calculation Engine, calculate peak to shoulder difference +# DPD Calculation Engine, calculate peak to shoulder difference. # # http://www.opendigitalradio.org # Licence: The MIT License, see notice at the end of this file @@ -15,28 +15,35 @@ logging_path = os.path.dirname(logging.getLoggerClass().root.handlers[0].baseFil import numpy as np import matplotlib.pyplot as plt + def plt_next_axis(sub_rows, sub_cols, i_sub): i_sub += 1 ax = plt.subplot(sub_rows, sub_cols, i_sub) return i_sub, ax -def plt_annotate(ax, x,y,title=None,legend_loc=None): + +def plt_annotate(ax, x, y, title=None, legend_loc=None): ax.set_xlabel(x) ax.set_ylabel(y) - if title is not None: ax.set_title(title) - if legend_loc is not None: ax.legend(loc=legend_loc) + if title is not None: + ax.set_title(title) + if legend_loc is not None: + ax.legend(loc=legend_loc) + def calc_fft_db(signal, offset, c): fft = np.fft.fftshift(np.fft.fft(signal[offset:offset + c.MS_FFT_size])) fft_db = 20 * np.log10(np.abs(fft)) return fft_db + def _calc_peak(fft, c): assert fft.shape == (c.MS_FFT_size,), fft.shape idxs = (c.MS_peak_start, c.MS_peak_end) peak = np.mean(fft[idxs[0]:idxs[1]]) return peak, idxs + def _calc_shoulder_hight(fft_db, c): assert fft_db.shape == (c.MS_FFT_size,), fft_db.shape idxs_left = (c.MS_shoulder_left_start, c.MS_shoulder_left_end) @@ -48,26 +55,26 @@ def _calc_shoulder_hight(fft_db, c): shoulder = np.mean((shoulder_left, shoulder_right)) return shoulder, (idxs_left, idxs_right) + def calc_shoulder(fft, c): peak = _calc_peak(fft, c)[0] shoulder = _calc_shoulder_hight(fft, c)[0] assert (peak >= shoulder), (peak, shoulder) return peak, shoulder + def shoulder_from_sig_offset(arg): signal, offset, c = arg fft_db = calc_fft_db(signal, offset, c) peak, shoulder = calc_shoulder(fft_db, c) - return peak-shoulder, peak, shoulder + return peak - shoulder, peak, shoulder class Measure_Shoulders: """Calculate difference between the DAB signal and the shoulder hight in the power spectrum""" - def __init__(self, - c, - plot=False): + def __init__(self, c): self.c = c self.plot = c.MS_plot @@ -75,9 +82,9 @@ class Measure_Shoulders: dt = datetime.datetime.now().isoformat() fig_path = logging_path + "/" + dt + "_sync_subsample_aligned.svg" - fft = calc_fft_db(signal, 100, 10) - peak, idxs_peak = self._calc_peak(fft) - shoulder, idxs_sh = self._calc_shoulder_hight(fft, self.c) + fft = calc_fft_db(signal, 100, self.c) + peak, idxs_peak = _calc_peak(fft, self.c) + shoulder, idxs_sh = _calc_shoulder_hight(fft, self.c) sub_rows = 1 sub_cols = 1 @@ -93,7 +100,7 @@ class Measure_Shoulders: ax.plot(idxs_sh[1], (shoulder, shoulder), color='blue') plt_annotate(ax, "Frequency", "Magnitude [dB]", None, 4) - ax.text(100, -17, str(self.calc_shoulder(fft, self.c))) + ax.text(100, -17, str(calc_shoulder(fft, self.c))) ax.set_ylim(-20, 30) fig.tight_layout() @@ -106,14 +113,13 @@ class Measure_Shoulders: return None assert signal.shape[0] > 4 * self.c.MS_FFT_size - if n_avg is None: n_avg = self.c.MS_averaging_size + if n_avg is None: + n_avg = self.c.MS_averaging_size off_min = 0 off_max = signal.shape[0] - self.c.MS_FFT_size offsets = np.linspace(off_min, off_max, num=n_avg, dtype=int) - shoulders = [] - args = zip( [signal, ] * offsets.shape[0], offsets, @@ -129,7 +135,6 @@ class Measure_Shoulders: return np.mean(shoulders_diff), np.mean(shoulders), np.mean(peaks) - # The MIT License (MIT) # # Copyright (c) 2017 Andreas Steger |