aboutsummaryrefslogtreecommitdiffstats
path: root/dpd/src/ExtractStatistic.py
diff options
context:
space:
mode:
authorMatthias P. Braendli <matthias.braendli@mpb.li>2018-12-04 10:18:33 +0100
committerMatthias P. Braendli <matthias.braendli@mpb.li>2018-12-04 10:18:33 +0100
commitd5cbe10c0e2298b0e40161607a3da158249bdb82 (patch)
tree5f6a0ff40ce5b3dd39d0df1c348557b183b48a7e /dpd/src/ExtractStatistic.py
parent594cb2691debaa7562fd7d76d3b224701ec087ea (diff)
downloaddabmod-d5cbe10c0e2298b0e40161607a3da158249bdb82.tar.gz
dabmod-d5cbe10c0e2298b0e40161607a3da158249bdb82.tar.bz2
dabmod-d5cbe10c0e2298b0e40161607a3da158249bdb82.zip
Move python stuff to folder
Diffstat (limited to 'dpd/src/ExtractStatistic.py')
-rw-r--r--dpd/src/ExtractStatistic.py196
1 files changed, 0 insertions, 196 deletions
diff --git a/dpd/src/ExtractStatistic.py b/dpd/src/ExtractStatistic.py
deleted file mode 100644
index 639513a..0000000
--- a/dpd/src/ExtractStatistic.py
+++ /dev/null
@@ -1,196 +0,0 @@
-# -*- coding: utf-8 -*-
-#
-# DPD Computation Engine,
-# Extract statistic from received TX and RX data to use in Model
-#
-# http://www.opendigitalradio.org
-# Licence: The MIT License, see notice at the end of this file
-
-import numpy as np
-import matplotlib.pyplot as plt
-import datetime
-import os
-import logging
-
-
-def _check_input_extract(tx_dpd, rx_received):
- # Check data type
- assert tx_dpd[0].dtype == np.complex64, \
- "tx_dpd is not complex64 but {}".format(tx_dpd[0].dtype)
- assert rx_received[0].dtype == np.complex64, \
- "rx_received is not complex64 but {}".format(rx_received[0].dtype)
- # Check if signals have same normalization
- normalization_error = np.abs(np.median(np.abs(tx_dpd)) -
- np.median(np.abs(rx_received))) / (
- np.median(np.abs(tx_dpd)) + np.median(np.abs(rx_received)))
- assert normalization_error < 0.01, "Non normalized signals"
-
-
-def _phase_diff_value_per_bin(phase_diffs_values_lists):
- phase_list = []
- for values in phase_diffs_values_lists:
- mean = np.mean(values) if len(values) > 0 else np.nan
- phase_list.append(mean)
- return phase_list
-
-
-class ExtractStatistic:
- """Calculate a low variance RX value for equally spaced tx values
- of a predefined range"""
-
- def __init__(self, c):
- self.c = c
-
- # Number of measurements used to extract the statistic
- self.n_meas = 0
-
- # Boundaries for the bins
- self.tx_boundaries = np.linspace(c.ES_start, c.ES_end, c.ES_n_bins + 1)
- self.n_per_bin = c.ES_n_per_bin
-
- # List of rx values for each bin
- self.rx_values_lists = []
- for i in range(c.ES_n_bins):
- self.rx_values_lists.append([])
-
- # List of tx values for each bin
- self.tx_values_lists = []
- for i in range(c.ES_n_bins):
- self.tx_values_lists.append([])
-
- self.plot = c.ES_plot
-
- def _plot_and_log(self, tx_values, rx_values, phase_diffs_values, phase_diffs_values_lists):
- if self.plot and self.c.plot_location is not None:
- dt = datetime.datetime.now().isoformat()
- fig_path = self.c.plot_location + "/" + dt + "_ExtractStatistic.png"
- sub_rows = 3
- sub_cols = 1
- fig = plt.figure(figsize=(sub_cols * 6, sub_rows / 2. * 6))
- i_sub = 0
-
- i_sub += 1
- ax = plt.subplot(sub_rows, sub_cols, i_sub)
- ax.plot(tx_values, rx_values,
- label="Estimated Values",
- color="red")
- for i, tx_value in enumerate(tx_values):
- rx_values_list = self.rx_values_lists[i]
- ax.scatter(np.ones(len(rx_values_list)) * tx_value,
- np.abs(rx_values_list),
- s=0.1,
- color="black")
- ax.set_title("Extracted Statistic")
- ax.set_xlabel("TX Amplitude")
- ax.set_ylabel("RX Amplitude")
- ax.set_ylim(0, 0.8)
- ax.set_xlim(0, 1.1)
- ax.legend(loc=4)
-
- i_sub += 1
- ax = plt.subplot(sub_rows, sub_cols, i_sub)
- ax.plot(tx_values, np.rad2deg(phase_diffs_values),
- label="Estimated Values",
- color="red")
- for i, tx_value in enumerate(tx_values):
- phase_diff = phase_diffs_values_lists[i]
- ax.scatter(np.ones(len(phase_diff)) * tx_value,
- np.rad2deg(phase_diff),
- s=0.1,
- color="black")
- ax.set_xlabel("TX Amplitude")
- ax.set_ylabel("Phase Difference")
- ax.set_ylim(-60, 60)
- ax.set_xlim(0, 1.1)
- ax.legend(loc=4)
-
- num = []
- for i, tx_value in enumerate(tx_values):
- rx_values_list = self.rx_values_lists[i]
- num.append(len(rx_values_list))
- i_sub += 1
- ax = plt.subplot(sub_rows, sub_cols, i_sub)
- ax.plot(num)
- ax.set_xlabel("TX Amplitude")
- ax.set_ylabel("Number of Samples")
- ax.set_ylim(0, self.n_per_bin * 1.2)
-
- fig.tight_layout()
- fig.savefig(fig_path)
- plt.close(fig)
-
- def _rx_value_per_bin(self):
- rx_values = []
- for values in self.rx_values_lists:
- mean = np.mean(np.abs(values)) if len(values) > 0 else np.nan
- rx_values.append(mean)
- return rx_values
-
- def _tx_value_per_bin(self):
- tx_values = []
- for start, end in zip(self.tx_boundaries, self.tx_boundaries[1:]):
- tx_values.append(np.mean((start, end)))
- return tx_values
-
- def _phase_diff_list_per_bin(self):
- phase_values_lists = []
- for tx_list, rx_list in zip(self.tx_values_lists, self.rx_values_lists):
- phase_diffs = []
- for tx, rx in zip(tx_list, rx_list):
- phase_diffs.append(np.angle(rx * tx.conjugate()))
- phase_values_lists.append(phase_diffs)
- return phase_values_lists
-
- def extract(self, tx_dpd, rx):
- """Extract information from a new measurement and store them
- in member variables."""
- _check_input_extract(tx_dpd, rx)
- self.n_meas += 1
-
- tx_abs = np.abs(tx_dpd)
- for i, (tx_start, tx_end) in enumerate(zip(self.tx_boundaries, self.tx_boundaries[1:])):
- mask = (tx_abs > tx_start) & (tx_abs < tx_end)
- n_add = max(0, self.n_per_bin - len(self.rx_values_lists[i]))
- self.rx_values_lists[i] += \
- list(rx[mask][:n_add])
- self.tx_values_lists[i] += \
- list(tx_dpd[mask][:n_add])
-
- rx_values = self._rx_value_per_bin()
- tx_values = self._tx_value_per_bin()
-
- n_per_bin = np.array([len(values) for values in self.rx_values_lists])
- # Index of first not filled bin, assumes that never all bins are filled
- idx_end = np.argmin(n_per_bin == self.c.ES_n_per_bin)
-
- phase_diffs_values_lists = self._phase_diff_list_per_bin()
- phase_diffs_values = _phase_diff_value_per_bin(phase_diffs_values_lists)
-
- self._plot_and_log(tx_values, rx_values, phase_diffs_values, phase_diffs_values_lists)
-
- tx_values_crop = np.array(tx_values, dtype=np.float32)[:idx_end]
- rx_values_crop = np.array(rx_values, dtype=np.float32)[:idx_end]
- phase_diffs_values_crop = np.array(phase_diffs_values, dtype=np.float32)[:idx_end]
- return tx_values_crop, rx_values_crop, phase_diffs_values_crop, n_per_bin
-
-# The MIT License (MIT)
-#
-# Copyright (c) 2017 Andreas Steger
-#
-# Permission is hereby granted, free of charge, to any person obtaining a copy
-# of this software and associated documentation files (the "Software"), to deal
-# in the Software without restriction, including without limitation the rights
-# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
-# copies of the Software, and to permit persons to whom the Software is
-# furnished to do so, subject to the following conditions:
-#
-# The above copyright notice and this permission notice shall be included in all
-# copies or substantial portions of the Software.
-#
-# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
-# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
-# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
-# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
-# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
-# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
-# SOFTWARE.