diff options
author | andreas128 <Andreas> | 2017-08-19 14:41:40 +0200 |
---|---|---|
committer | andreas128 <Andreas> | 2017-08-19 14:41:40 +0200 |
commit | a7cec585afe6d4805f61461091e516b25574945d (patch) | |
tree | ea92aace0941524f33ee6836f4c0ffc2c47767c2 | |
parent | 8696ebf0d58e0e2b9b362497e6c1b778de4a20b6 (diff) | |
download | dabmod-a7cec585afe6d4805f61461091e516b25574945d.tar.gz dabmod-a7cec585afe6d4805f61461091e516b25574945d.tar.bz2 dabmod-a7cec585afe6d4805f61461091e516b25574945d.zip |
Fix target function for subsampling alignment
-rw-r--r-- | dpd/src/Measure.py | 13 | ||||
-rwxr-xr-x | dpd/src/subsample_align.py | 4 |
2 files changed, 15 insertions, 2 deletions
diff --git a/dpd/src/Measure.py b/dpd/src/Measure.py index 0f90a44..ba71917 100644 --- a/dpd/src/Measure.py +++ b/dpd/src/Measure.py @@ -130,11 +130,24 @@ class Measure: tx_rx_frame_path = ('/tmp/tx_rx_sync1_' + datetime.datetime.now().isoformat() + '.pdf') + plt.subplot(311) plt.plot(np.abs(rxframe_aligned[:128]), label="rxframe") plt.plot(np.abs(txframe_aligned[:128]), label="txframe") plt.xlabel("Samples") + plt.ylabel("Absolute Value") + plt.legend() + plt.subplot(312) + plt.plot(np.real(rxframe_aligned[:128]), label="rxframe_real", alpha=0.5, linestyle=":") + plt.plot(np.real(txframe_aligned[:128]), label="txframe_real", alpha=0.5, linestyle=":") + plt.xlabel("Samples") plt.ylabel("Real Part") plt.legend() + plt.subplot(313) + plt.plot(np.imag(rxframe_aligned[:128]), label="rxframe_imag", alpha=0.5, linestyle="--") + plt.plot(np.imag(txframe_aligned[:128]), label="txframe_imag", alpha=0.5, linestyle="--") + plt.xlabel("Samples") + plt.ylabel("Imaginary Part") + plt.legend() plt.savefig(tx_rx_frame_path) plt.clf() diff --git a/dpd/src/subsample_align.py b/dpd/src/subsample_align.py index eda1dce..4dc854b 100755 --- a/dpd/src/subsample_align.py +++ b/dpd/src/subsample_align.py @@ -52,7 +52,7 @@ def subsample_align(sig, ref_sig): corr_sig = np.fft.ifft(rotate_vec * fft_sig) - return -np.abs(np.sum(corr_sig * ref_sig)) + return -np.abs(np.sum(corr_sig.conjugate() * ref_sig)) optim_result = optimize.minimize_scalar(correlate_for_delay, bounds=(-1,1), method='bounded', options={'disp': True}) @@ -61,7 +61,7 @@ def subsample_align(sig, ref_sig): #print("Found subsample delay = {}".format(best_tau)) - if 0: + if 1: corr = np.vectorize(correlate_for_delay) ixs = np.linspace(-1, 1, 100) taus = corr(ixs) |