aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorMatthias P. Braendli <matthias.braendli@mpb.li>2018-12-18 16:53:56 +0100
committerMatthias P. Braendli <matthias.braendli@mpb.li>2018-12-18 16:53:56 +0100
commit9d2c85f7a2a23fcf9ce3c842d86227afed43a153 (patch)
treefe3961130d308212047381eb23a8d2b6e2065dfe
parente83e1324a50055a4b972b78e26383df7ee290fee (diff)
downloaddabmod-9d2c85f7a2a23fcf9ce3c842d86227afed43a153.tar.gz
dabmod-9d2c85f7a2a23fcf9ce3c842d86227afed43a153.tar.bz2
dabmod-9d2c85f7a2a23fcf9ce3c842d86227afed43a153.zip
GUI: Automatically iterate captures and show model plots
-rw-r--r--python/dpd/Model_AM.py23
-rw-r--r--python/dpd/Model_PM.py23
-rw-r--r--python/dpd/Model_Poly.py14
-rwxr-xr-xpython/dpdce.py117
-rw-r--r--python/gui/static/js/odr-predistortion.js7
-rw-r--r--python/gui/templates/predistortion.html2
6 files changed, 98 insertions, 88 deletions
diff --git a/python/dpd/Model_AM.py b/python/dpd/Model_AM.py
index 75b226f..b07a5a5 100644
--- a/python/dpd/Model_AM.py
+++ b/python/dpd/Model_AM.py
@@ -42,22 +42,18 @@ class Model_AM:
"""Calculates new coefficients using the measurement and the previous
coefficients"""
- def __init__(self,
- c,
- learning_rate_am=1,
- plot=False):
+ def __init__(self, c, learning_rate_am=1):
self.c = c
-
self.learning_rate_am = learning_rate_am
- self.plot = plot
+ self._plot_data = None
+
+ def plot(self, plot_location, title):
+ if self._plot_data is not None:
+ tx_dpd, rx_received, coefs_am, coefs_am_new = self._plot_data
- def _plot(self, tx_dpd, rx_received, coefs_am, coefs_am_new):
- if self.plot and self.c.plot_location is not None:
tx_range, rx_est = calc_line(coefs_am, 0, 0.6)
tx_range_new, rx_est_new = calc_line(coefs_am_new, 0, 0.6)
- dt = datetime.datetime.now().isoformat()
- fig_path = self.c.plot_location + "/" + dt + "_Model_AM.png"
sub_rows = 1
sub_cols = 1
fig = plt.figure(figsize=(sub_cols * 6, sub_rows / 2. * 6))
@@ -76,14 +72,14 @@ class Model_AM:
label="Binned Data",
color="blue",
s=1)
- ax.set_title("Model_AM")
+ ax.set_title("Model_AM {}".format(title))
ax.set_xlabel("TX Amplitude")
ax.set_ylabel("RX Amplitude")
ax.set_xlim(-0.5, 1.5)
ax.legend(loc=4)
fig.tight_layout()
- fig.savefig(fig_path)
+ fig.savefig(plot_location)
plt.close(fig)
def get_next_coefs(self, tx_dpd, rx_received, coefs_am):
@@ -95,13 +91,14 @@ class Model_AM:
coefs_am_new = coefs_am + \
self.learning_rate_am * (coefs_am_new - coefs_am)
- self._plot(tx_dpd, rx_received, coefs_am, coefs_am_new)
+ self._plot_data = (tx_dpd, rx_received, coefs_am, coefs_am_new)
return coefs_am_new
# The MIT License (MIT)
#
# Copyright (c) 2017 Andreas Steger
+# Copyright (c) 2018 Matthias P. Braendli
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
diff --git a/python/dpd/Model_PM.py b/python/dpd/Model_PM.py
index 7b80bf3..40fa1d4 100644
--- a/python/dpd/Model_PM.py
+++ b/python/dpd/Model_PM.py
@@ -28,22 +28,18 @@ class Model_PM:
"""Calculates new coefficients using the measurement and the previous
coefficients"""
- def __init__(self,
- c,
- learning_rate_pm=1,
- plot=False):
+ def __init__(self, c, learning_rate_pm=1):
self.c = c
-
self.learning_rate_pm = learning_rate_pm
- self.plot = plot
+ self._plot_data = None
+
+ def plot(self, plot_location, title):
+ if self._plot_data is not None:
+ tx_dpd, phase_diff, coefs_pm, coefs_pm_new = self._plot_data
- def _plot(self, tx_dpd, phase_diff, coefs_pm, coefs_pm_new):
- if self.plot and self.c.plot_location is not None:
tx_range, phase_diff_est = self.calc_line(coefs_pm, 0, 0.6)
tx_range_new, phase_diff_est_new = self.calc_line(coefs_pm_new, 0, 0.6)
- dt = datetime.datetime.now().isoformat()
- fig_path = self.c.plot_location + "/" + dt + "_Model_PM.png"
sub_rows = 1
sub_cols = 1
fig = plt.figure(figsize=(sub_cols * 6, sub_rows / 2. * 6))
@@ -62,13 +58,13 @@ class Model_PM:
label="Binned Data",
color="blue",
s=1)
- ax.set_title("Model_PM")
+ ax.set_title("Model_PM {}".format(title))
ax.set_xlabel("TX Amplitude")
ax.set_ylabel("Phase DIff")
ax.legend(loc=4)
fig.tight_layout()
- fig.savefig(fig_path)
+ fig.savefig(plot_location)
plt.close(fig)
def _discard_small_values(self, tx_dpd, phase_diff):
@@ -97,13 +93,14 @@ class Model_PM:
coefs_pm_new = self.fit_poly(tx_dpd, phase_diff)
coefs_pm_new = coefs_pm + self.learning_rate_pm * (coefs_pm_new - coefs_pm)
- self._plot(tx_dpd, phase_diff, coefs_pm, coefs_pm_new)
+ self._plot_data = (tx_dpd, phase_diff, coefs_pm, coefs_pm_new)
return coefs_pm_new
# The MIT License (MIT)
#
# Copyright (c) 2017 Andreas Steger
+# Copyright (c) 2018 Matthias P. Braendli
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
diff --git a/python/dpd/Model_Poly.py b/python/dpd/Model_Poly.py
index c8f6135..ca39492 100644
--- a/python/dpd/Model_Poly.py
+++ b/python/dpd/Model_Poly.py
@@ -36,20 +36,20 @@ class Poly:
"""Calculates new coefficients using the measurement and the previous
coefficients"""
- def __init__(self,
- c,
- learning_rate_am=1.0,
- learning_rate_pm=1.0):
+ def __init__(self, c, learning_rate_am=1.0, learning_rate_pm=1.0):
self.c = c
- self.plot = c.MDL_plot
self.learning_rate_am = learning_rate_am
self.learning_rate_pm = learning_rate_pm
self.reset_coefs()
- self.model_am = Model_AM.Model_AM(c, plot=self.plot)
- self.model_pm = Model_PM.Model_PM(c, plot=self.plot)
+ self.model_am = Model_AM.Model_AM(c)
+ self.model_pm = Model_PM.Model_PM(c)
+
+ def plot(self, am_plot_location, pm_plot_location, title):
+ self.model_am.plot(am_plot_location, title)
+ self.model_pm.plot(pm_plot_location, title)
def reset_coefs(self):
self.coefs_am = np.zeros(5, dtype=np.float32)
diff --git a/python/dpdce.py b/python/dpdce.py
index a9ed140..e601d9c 100755
--- a/python/dpdce.py
+++ b/python/dpdce.py
@@ -142,6 +142,8 @@ internal_data = {
}
results = {
'statplot': None,
+ 'amplot': None,
+ 'pmplot': None,
'tx_median': 0,
'rx_median': 0,
'state': 'Idle',
@@ -203,71 +205,76 @@ def engine_worker():
results['stateprogress'] = 0
n_runs = internal_data['n_runs']
- # Get Samples and check gain
- txframe_aligned, tx_ts, rxframe_aligned, rx_ts, rx_median, tx_median = meas.get_samples()
- # TODO Check TX median
-
- with lock:
- results['stateprogress'] = 20
- results['summary'] = ["Captured {} samples".format(len(txframe_aligned)),
- "TX/RX median: {} / {}".format(tx_median, rx_median)]
+ while True:
+ # Get Samples and check gain
+ txframe_aligned, tx_ts, rxframe_aligned, rx_ts, rx_median, tx_median = meas.get_samples()
+ # TODO Check TX median
- # Extract usable data from measurement
- tx, rx, phase_diff, n_per_bin = extStat.extract(txframe_aligned, rxframe_aligned)
-
- time = datetime.datetime.utcnow()
+ with lock:
+ results['stateprogress'] += 5
+ results['summary'] = ["Captured {} samples".format(len(txframe_aligned)),
+ "TX/RX median: {} / {}".format(tx_median, rx_median)]
- plot_file = "stats_{}.png".format(time.strftime("%s"))
- extStat.plot(os.path.join(plot_path, plot_file), time.strftime("%Y-%m-%dT%H%M%S"))
+ # Extract usable data from measurement
+ tx, rx, phase_diff, n_per_bin = extStat.extract(txframe_aligned, rxframe_aligned)
- with lock:
- results['statplot'] = "dpd/" + plot_file
- results['stateprogress'] = 30
- results['summary'] += ["Extracted Statistics".format(tx_median, rx_median)]
-
- n_meas = Heuristics.get_n_meas(n_runs)
- if extStat.n_meas >= n_meas: # Use as many measurements nr of runs
- if any(x is None for x in [tx, rx, phase_diff]):
- with lock:
- results['summary'] += ["Error! No data to calculate model"]
- results['state'] = 'Idle'
- results['stateprogress'] = 0
- else:
- with lock:
- results['state'] = 'Capture + Model'
- results['stateprogress'] = 40
- results['summary'] += ["Training model"]
-
- model.train(tx, rx, phase_diff, lr=Heuristics.get_learning_rate(n_runs))
-
- with lock:
- results['state'] = 'Capture + Model'
- results['stateprogress'] = 60
- results['summary'] += ["Getting DPD data"]
-
- dpddata = model.get_dpd_data()
- with lock:
- internal_data['dpddata'] = dpddata
- internal_data['n_runs'] = 0
-
- results['state'] = 'Capture + Model'
- results['stateprogress'] = 80
- results['summary'] += ["Reset statistics"]
-
- extStat = ExtractStatistic(c)
-
- with lock:
- results['state'] = 'Idle'
- results['stateprogress'] = 100
- results['summary'] += ["New DPD coefficients calculated"]
+ time = datetime.datetime.utcnow()
+ plot_file = "stats_{}.png".format(time.strftime("%s"))
+ extStat.plot(os.path.join(plot_path, plot_file), time.strftime("%Y-%m-%dT%H%M%S"))
+ n_meas = Heuristics.get_n_meas(n_runs)
with lock:
+ results['statplot'] = "dpd/" + plot_file
+ results['stateprogress'] += 5
+ results['summary'] += ["Extracted Statistics".format(tx_median, rx_median),
+ "Runs: {}/{}".format(extStat.n_meas, n_meas)]
internal_data['n_runs'] += 1
+ if extStat.n_meas >= n_meas:
+ break
+
+ if any(x is None for x in [tx, rx, phase_diff]):
+ with lock:
+ results['summary'] += ["Error! No data to calculate model"]
+ results['state'] = 'Idle'
+ results['stateprogress'] = 0
else:
with lock:
+ results['state'] = 'Capture + Model'
+ results['stateprogress'] = 60
+ results['summary'] += ["Training model"]
+
+ model.train(tx, rx, phase_diff, lr=Heuristics.get_learning_rate(n_runs))
+
+ time = datetime.datetime.utcnow()
+ am_plot_file = "model_am_{}.png".format(time.strftime("%s"))
+ pm_plot_file = "model_pm_{}.png".format(time.strftime("%s"))
+ model.plot(
+ os.path.join(plot_path, am_plot_file),
+ os.path.join(plot_path, pm_plot_file),
+ time.strftime("%Y-%m-%dT%H%M%S"))
+
+ with lock:
+ results['amplot'] = "dpd/" + am_plot_file
+ results['pmplot'] = "dpd/" + pm_plot_file
+ results['state'] = 'Capture + Model'
+ results['stateprogress'] = 70
+ results['summary'] += ["Getting DPD data"]
+
+ dpddata = model.get_dpd_data()
+ with lock:
+ internal_data['dpddata'] = dpddata
+ internal_data['n_runs'] = 0
+
+ results['state'] = 'Capture + Model'
+ results['stateprogress'] = 80
+ results['summary'] += ["Reset statistics"]
+
+ extStat = ExtractStatistic(c)
+
+ with lock:
results['state'] = 'Idle'
results['stateprogress'] = 100
- results['summary'] += ["More data required to train model"]
+ results['summary'] += ["New DPD coefficients calculated"]
finally:
with lock:
diff --git a/python/gui/static/js/odr-predistortion.js b/python/gui/static/js/odr-predistortion.js
index e9f7c96..ff82142 100644
--- a/python/gui/static/js/odr-predistortion.js
+++ b/python/gui/static/js/odr-predistortion.js
@@ -39,6 +39,13 @@ function resultrefresh() {
if (data['statplot']) {
$('#dpdcapturestats').attr('src', data['statplot']);
}
+
+ if (data['amplot']) {
+ $('#dpdamplot').attr('src', data['amplot']);
+ }
+ if (data['pmplot']) {
+ $('#dpdpmplot').attr('src', data['pmplot']);
+ }
});
jqxhr.always(function() {
diff --git a/python/gui/templates/predistortion.html b/python/gui/templates/predistortion.html
index adbba7e..e21c688 100644
--- a/python/gui/templates/predistortion.html
+++ b/python/gui/templates/predistortion.html
@@ -42,6 +42,8 @@
<div class="panel-heading">Capture Statistics</div>
<div class="panel-body">
<img id="dpdcapturestats" />
+ <img id="dpdamplot" />
+ <img id="dpdpmplot" />
</div>
</div>