aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorMatthias P. Braendli <matthias.braendli@mpb.li>2018-12-19 16:11:58 +0100
committerMatthias P. Braendli <matthias.braendli@mpb.li>2018-12-19 16:12:19 +0100
commitf4ca82137e850e30d31e7008b34800d8b2699e5d (patch)
treeff19ad63f6ddf8a4f62b173c5955b2711646f123
parent9d2c85f7a2a23fcf9ce3c842d86227afed43a153 (diff)
downloaddabmod-f4ca82137e850e30d31e7008b34800d8b2699e5d.tar.gz
dabmod-f4ca82137e850e30d31e7008b34800d8b2699e5d.tar.bz2
dabmod-f4ca82137e850e30d31e7008b34800d8b2699e5d.zip
DPD: Merge Model_PM and _AM into _Poly
-rw-r--r--python/dpd/ExtractStatistic.py8
-rw-r--r--python/dpd/GlobalConfig.py9
-rw-r--r--python/dpd/Model_AM.py119
-rw-r--r--python/dpd/Model_PM.py121
-rw-r--r--python/dpd/Model_Poly.py146
-rw-r--r--python/dpd/RX_Agc.py18
-rwxr-xr-xpython/dpdce.py41
-rw-r--r--python/gui/static/js/odr-predistortion.js10
-rw-r--r--python/gui/templates/predistortion.html5
9 files changed, 190 insertions, 287 deletions
diff --git a/python/dpd/ExtractStatistic.py b/python/dpd/ExtractStatistic.py
index 1aa4391..a23fa1a 100644
--- a/python/dpd/ExtractStatistic.py
+++ b/python/dpd/ExtractStatistic.py
@@ -38,7 +38,7 @@ class ExtractStatistic:
"""Calculate a low variance RX value for equally spaced tx values
of a predefined range"""
- def __init__(self, c):
+ def __init__(self, c, peak_amplitude):
self.c = c
self._plot_data = None
@@ -47,7 +47,7 @@ class ExtractStatistic:
self.n_meas = 0
# Boundaries for the bins
- self.tx_boundaries = np.linspace(c.ES_start, c.ES_end, c.ES_n_bins + 1)
+ self.tx_boundaries = np.linspace(0.0, peak_amplitude, c.ES_n_bins + 1)
self.n_per_bin = c.ES_n_per_bin
# List of rx values for each bin
@@ -60,6 +60,10 @@ class ExtractStatistic:
for i in range(c.ES_n_bins):
self.tx_values_lists.append([])
+ def get_bin_info(self):
+ return "Binning: {} bins used for amplitudes between {} and {}".format(
+ len(self.tx_boundaries), np.min(self.tx_boundaries), np.max(self.tx_boundaries))
+
def plot(self, plot_path, title):
if self._plot_data is not None:
tx_values, rx_values, phase_diffs_values, phase_diffs_values_lists = self._plot_data
diff --git a/python/dpd/GlobalConfig.py b/python/dpd/GlobalConfig.py
index 99280f2..632a63b 100644
--- a/python/dpd/GlobalConfig.py
+++ b/python/dpd/GlobalConfig.py
@@ -26,6 +26,8 @@ class GlobalConfig:
self.T_U = oversample * 2048 # Inverse of carrier spacing
self.T_C = oversample * 504 # Duration of cyclic prefix
+ self.median_to_peak = 12 # Estimated value for a DAB OFDM signal
+
# Frequency Domain
# example: np.delete(fft[3328:4865], 768)
self.FFT_delta = 1536 # Number of carrier frequencies
@@ -40,10 +42,8 @@ class GlobalConfig:
self.phase_offset_per_sample = 1. / self.sample_rate * 2 * np.pi * 1000
# Constants for ExtractStatistic
- self.ES_plot = plot
- self.ES_start = 0.0
self.ES_end = 1.0
- self.ES_n_bins = 64 # Number of bins between ES_start and ES_end
+ self.ES_n_bins = 64
self.ES_n_per_bin = 128 # Number of measurements pre bin
# Constants for Measure_Shoulder
@@ -68,9 +68,6 @@ class GlobalConfig:
# Constants for MER
self.MER_plot = plot
- # Constants for Model
- self.MDL_plot = plot
-
# Constants for Model_PM
# Set all phase offsets to zero for TX amplitude < MPM_tx_min
self.MPM_tx_min = 0.1
diff --git a/python/dpd/Model_AM.py b/python/dpd/Model_AM.py
deleted file mode 100644
index b07a5a5..0000000
--- a/python/dpd/Model_AM.py
+++ /dev/null
@@ -1,119 +0,0 @@
-# -*- coding: utf-8 -*-
-#
-# DPD Computation Engine, model implementation for Amplitude and not Phase
-#
-# http://www.opendigitalradio.org
-# Licence: The MIT License, see notice at the end of this file
-
-import datetime
-import os
-import logging
-import numpy as np
-import matplotlib.pyplot as plt
-
-
-def is_npfloat32(array):
- assert isinstance(array, np.ndarray), type(array)
- assert array.dtype == np.float32, array.dtype
- assert array.flags.contiguous
- assert not any(np.isnan(array))
-
-
-def check_input_get_next_coefs(tx_dpd, rx_received):
- is_npfloat32(tx_dpd)
- is_npfloat32(rx_received)
-
-
-def poly(sig):
- return np.array([sig ** i for i in range(1, 6)]).T
-
-
-def fit_poly(tx_abs, rx_abs):
- return np.linalg.lstsq(poly(rx_abs), tx_abs, rcond=None)[0]
-
-
-def calc_line(coefs, min_amp, max_amp):
- rx_range = np.linspace(min_amp, max_amp)
- tx_est = np.sum(poly(rx_range) * coefs, axis=1)
- return tx_est, rx_range
-
-
-class Model_AM:
- """Calculates new coefficients using the measurement and the previous
- coefficients"""
-
- def __init__(self, c, learning_rate_am=1):
- self.c = c
- self.learning_rate_am = learning_rate_am
- self._plot_data = None
-
- def plot(self, plot_location, title):
- if self._plot_data is not None:
- tx_dpd, rx_received, coefs_am, coefs_am_new = self._plot_data
-
- tx_range, rx_est = calc_line(coefs_am, 0, 0.6)
- tx_range_new, rx_est_new = calc_line(coefs_am_new, 0, 0.6)
-
- sub_rows = 1
- sub_cols = 1
- fig = plt.figure(figsize=(sub_cols * 6, sub_rows / 2. * 6))
- i_sub = 0
-
- i_sub += 1
- ax = plt.subplot(sub_rows, sub_cols, i_sub)
- ax.plot(tx_range, rx_est,
- label="Estimated TX",
- alpha=0.3,
- color="gray")
- ax.plot(tx_range_new, rx_est_new,
- label="New Estimated TX",
- color="red")
- ax.scatter(tx_dpd, rx_received,
- label="Binned Data",
- color="blue",
- s=1)
- ax.set_title("Model_AM {}".format(title))
- ax.set_xlabel("TX Amplitude")
- ax.set_ylabel("RX Amplitude")
- ax.set_xlim(-0.5, 1.5)
- ax.legend(loc=4)
-
- fig.tight_layout()
- fig.savefig(plot_location)
- plt.close(fig)
-
- def get_next_coefs(self, tx_dpd, rx_received, coefs_am):
- """Calculate the next AM/AM coefficients using the extracted
- statistic of TX and RX amplitude"""
- check_input_get_next_coefs(tx_dpd, rx_received)
-
- coefs_am_new = fit_poly(tx_dpd, rx_received)
- coefs_am_new = coefs_am + \
- self.learning_rate_am * (coefs_am_new - coefs_am)
-
- self._plot_data = (tx_dpd, rx_received, coefs_am, coefs_am_new)
-
- return coefs_am_new
-
-# The MIT License (MIT)
-#
-# Copyright (c) 2017 Andreas Steger
-# Copyright (c) 2018 Matthias P. Braendli
-#
-# Permission is hereby granted, free of charge, to any person obtaining a copy
-# of this software and associated documentation files (the "Software"), to deal
-# in the Software without restriction, including without limitation the rights
-# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
-# copies of the Software, and to permit persons to whom the Software is
-# furnished to do so, subject to the following conditions:
-#
-# The above copyright notice and this permission notice shall be included in all
-# copies or substantial portions of the Software.
-#
-# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
-# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
-# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
-# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
-# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
-# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
-# SOFTWARE.
diff --git a/python/dpd/Model_PM.py b/python/dpd/Model_PM.py
deleted file mode 100644
index 40fa1d4..0000000
--- a/python/dpd/Model_PM.py
+++ /dev/null
@@ -1,121 +0,0 @@
-# -*- coding: utf-8 -*-
-#
-# DPD Computation Engine, model implementation for Amplitude and not Phase
-#
-# http://www.opendigitalradio.org
-# Licence: The MIT License, see notice at the end of this file
-
-import datetime
-import os
-import logging
-import numpy as np
-import matplotlib.pyplot as plt
-
-
-def is_npfloat32(array):
- assert isinstance(array, np.ndarray), type(array)
- assert array.dtype == np.float32, array.dtype
- assert array.flags.contiguous
- assert not any(np.isnan(array))
-
-
-def check_input_get_next_coefs(tx_dpd, phase_diff):
- is_npfloat32(tx_dpd)
- is_npfloat32(phase_diff)
-
-
-class Model_PM:
- """Calculates new coefficients using the measurement and the previous
- coefficients"""
-
- def __init__(self, c, learning_rate_pm=1):
- self.c = c
- self.learning_rate_pm = learning_rate_pm
- self._plot_data = None
-
- def plot(self, plot_location, title):
- if self._plot_data is not None:
- tx_dpd, phase_diff, coefs_pm, coefs_pm_new = self._plot_data
-
- tx_range, phase_diff_est = self.calc_line(coefs_pm, 0, 0.6)
- tx_range_new, phase_diff_est_new = self.calc_line(coefs_pm_new, 0, 0.6)
-
- sub_rows = 1
- sub_cols = 1
- fig = plt.figure(figsize=(sub_cols * 6, sub_rows / 2. * 6))
- i_sub = 0
-
- i_sub += 1
- ax = plt.subplot(sub_rows, sub_cols, i_sub)
- ax.plot(tx_range, phase_diff_est,
- label="Estimated Phase Diff",
- alpha=0.3,
- color="gray")
- ax.plot(tx_range_new, phase_diff_est_new,
- label="New Estimated Phase Diff",
- color="red")
- ax.scatter(tx_dpd, phase_diff,
- label="Binned Data",
- color="blue",
- s=1)
- ax.set_title("Model_PM {}".format(title))
- ax.set_xlabel("TX Amplitude")
- ax.set_ylabel("Phase DIff")
- ax.legend(loc=4)
-
- fig.tight_layout()
- fig.savefig(plot_location)
- plt.close(fig)
-
- def _discard_small_values(self, tx_dpd, phase_diff):
- """ Assumes that the phase for small tx amplitudes is zero"""
- mask = tx_dpd < self.c.MPM_tx_min
- phase_diff[mask] = 0
- return tx_dpd, phase_diff
-
- def poly(self, sig):
- return np.array([sig ** i for i in range(0, 5)]).T
-
- def fit_poly(self, tx_abs, phase_diff):
- return np.linalg.lstsq(self.poly(tx_abs), phase_diff, rcond=None)[0]
-
- def calc_line(self, coefs, min_amp, max_amp):
- tx_range = np.linspace(min_amp, max_amp)
- phase_diff = np.sum(self.poly(tx_range) * coefs, axis=1)
- return tx_range, phase_diff
-
- def get_next_coefs(self, tx_dpd, phase_diff, coefs_pm):
- """Calculate the next AM/PM coefficients using the extracted
- statistic of TX amplitude and phase difference"""
- tx_dpd, phase_diff = self._discard_small_values(tx_dpd, phase_diff)
- check_input_get_next_coefs(tx_dpd, phase_diff)
-
- coefs_pm_new = self.fit_poly(tx_dpd, phase_diff)
-
- coefs_pm_new = coefs_pm + self.learning_rate_pm * (coefs_pm_new - coefs_pm)
- self._plot_data = (tx_dpd, phase_diff, coefs_pm, coefs_pm_new)
-
- return coefs_pm_new
-
-# The MIT License (MIT)
-#
-# Copyright (c) 2017 Andreas Steger
-# Copyright (c) 2018 Matthias P. Braendli
-#
-# Permission is hereby granted, free of charge, to any person obtaining a copy
-# of this software and associated documentation files (the "Software"), to deal
-# in the Software without restriction, including without limitation the rights
-# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
-# copies of the Software, and to permit persons to whom the Software is
-# furnished to do so, subject to the following conditions:
-#
-# The above copyright notice and this permission notice shall be included in all
-# copies or substantial portions of the Software.
-#
-# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
-# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
-# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
-# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
-# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
-# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
-# SOFTWARE.
diff --git a/python/dpd/Model_Poly.py b/python/dpd/Model_Poly.py
index ca39492..5722531 100644
--- a/python/dpd/Model_Poly.py
+++ b/python/dpd/Model_Poly.py
@@ -8,15 +8,13 @@
import os
import logging
import numpy as np
+import matplotlib.pyplot as plt
-import dpd.Model_AM as Model_AM
-import dpd.Model_PM as Model_PM
-
-
-def assert_np_float32(x):
- assert isinstance(x, np.ndarray)
- assert x.dtype == np.float32
- assert x.flags.contiguous
+def assert_np_float32(array):
+ assert isinstance(array, np.ndarray), type(array)
+ assert array.dtype == np.float32, array.dtype
+ assert array.flags.contiguous
+ assert not any(np.isnan(array))
def _check_input_get_next_coefs(tx_abs, rx_abs, phase_diff):
@@ -44,12 +42,73 @@ class Poly:
self.reset_coefs()
- self.model_am = Model_AM.Model_AM(c)
- self.model_pm = Model_PM.Model_PM(c)
-
def plot(self, am_plot_location, pm_plot_location, title):
- self.model_am.plot(am_plot_location, title)
- self.model_pm.plot(pm_plot_location, title)
+ if self._am_plot_data is not None:
+ tx_dpd, rx_received, coefs_am, coefs_am_new = self._am_plot_data
+
+ tx_range, rx_est = self._am_calc_line(coefs_am, 0, 0.6)
+ tx_range_new, rx_est_new = self._am_calc_line(coefs_am_new, 0, 0.6)
+
+ sub_rows = 1
+ sub_cols = 1
+ fig = plt.figure(figsize=(sub_cols * 6, sub_rows / 2. * 6))
+ i_sub = 0
+
+ i_sub += 1
+ ax = plt.subplot(sub_rows, sub_cols, i_sub)
+ ax.plot(tx_range, rx_est,
+ label="Estimated TX",
+ alpha=0.3,
+ color="gray")
+ ax.plot(tx_range_new, rx_est_new,
+ label="New Estimated TX",
+ color="red")
+ ax.scatter(tx_dpd, rx_received,
+ label="Binned Data",
+ color="blue",
+ s=1)
+ ax.set_title("Model AM {}".format(title))
+ ax.set_xlabel("TX Amplitude")
+ ax.set_ylabel("RX Amplitude")
+ ax.set_xlim(-0.5, 1.5)
+ ax.legend(loc=4)
+
+ fig.tight_layout()
+ fig.savefig(am_plot_location)
+ plt.close(fig)
+
+ if self._pm_plot_data is not None:
+ tx_dpd, phase_diff, coefs_pm, coefs_pm_new = self._pm_plot_data
+
+ tx_range, phase_diff_est = self._pm_calc_line(coefs_pm, 0, 0.6)
+ tx_range_new, phase_diff_est_new = self._pm_calc_line(coefs_pm_new, 0, 0.6)
+
+ sub_rows = 1
+ sub_cols = 1
+ fig = plt.figure(figsize=(sub_cols * 6, sub_rows / 2. * 6))
+ i_sub = 0
+
+ i_sub += 1
+ ax = plt.subplot(sub_rows, sub_cols, i_sub)
+ ax.plot(tx_range, phase_diff_est,
+ label="Estimated Phase Diff",
+ alpha=0.3,
+ color="gray")
+ ax.plot(tx_range_new, phase_diff_est_new,
+ label="New Estimated Phase Diff",
+ color="red")
+ ax.scatter(tx_dpd, phase_diff,
+ label="Binned Data",
+ color="blue",
+ s=1)
+ ax.set_title("Model PM {}".format(title))
+ ax.set_xlabel("TX Amplitude")
+ ax.set_ylabel("Phase DIff")
+ ax.legend(loc=4)
+
+ fig.tight_layout()
+ fig.savefig(pm_plot_location)
+ plt.close(fig)
def reset_coefs(self):
self.coefs_am = np.zeros(5, dtype=np.float32)
@@ -65,12 +124,8 @@ class Poly:
"""
_check_input_get_next_coefs(tx_abs, rx_abs, phase_diff)
- if not lr is None:
- self.model_am.learning_rate_am = lr
- self.model_pm.learning_rate_pm = lr
-
- coefs_am_new = self.model_am.get_next_coefs(tx_abs, rx_abs, self.coefs_am)
- coefs_pm_new = self.model_pm.get_next_coefs(tx_abs, phase_diff, self.coefs_pm)
+ coefs_am_new = self._am_get_next_coefs(tx_abs, rx_abs, self.coefs_am)
+ coefs_pm_new = self._pm_get_next_coefs(tx_abs, phase_diff, self.coefs_pm)
self.coefs_am = self.coefs_am + (coefs_am_new - self.coefs_am) * self.learning_rate_am
self.coefs_pm = self.coefs_pm + (coefs_pm_new - self.coefs_pm) * self.learning_rate_pm
@@ -78,9 +133,62 @@ class Poly:
def get_dpd_data(self):
return "poly", self.coefs_am, self.coefs_pm
+ def _am_calc_line(self, coefs, min_amp, max_amp):
+ rx_range = np.linspace(min_amp, max_amp)
+ tx_est = np.sum(self._am_poly(rx_range) * coefs, axis=1)
+ return tx_est, rx_range
+
+ def _am_poly(self, sig):
+ return np.array([sig ** i for i in range(1, 6)]).T
+
+ def _am_fit_poly(self, tx_abs, rx_abs):
+ return np.linalg.lstsq(self._am_poly(rx_abs), tx_abs, rcond=None)[0]
+
+ def _am_get_next_coefs(self, tx_dpd, rx_received, coefs_am):
+ """Calculate the next AM/AM coefficients using the extracted
+ statistic of TX and RX amplitude"""
+
+ coefs_am_new = self._am_fit_poly(tx_dpd, rx_received)
+ coefs_am_new = coefs_am + \
+ self.learning_rate_am * (coefs_am_new - coefs_am)
+
+ self._am_plot_data = (tx_dpd, rx_received, coefs_am, coefs_am_new)
+
+ return coefs_am_new
+
+ def _pm_poly(self, sig):
+ return np.array([sig ** i for i in range(0, 5)]).T
+
+ def _pm_calc_line(self, coefs, min_amp, max_amp):
+ tx_range = np.linspace(min_amp, max_amp)
+ phase_diff = np.sum(self._pm_poly(tx_range) * coefs, axis=1)
+ return tx_range, phase_diff
+
+ def _discard_small_values(self, tx_dpd, phase_diff):
+ """ Assumes that the phase for small tx amplitudes is zero"""
+ mask = tx_dpd < self.c.MPM_tx_min
+ phase_diff[mask] = 0
+ return tx_dpd, phase_diff
+
+ def _pm_fit_poly(self, tx_abs, phase_diff):
+ return np.linalg.lstsq(self._pm_poly(tx_abs), phase_diff, rcond=None)[0]
+
+ def _pm_get_next_coefs(self, tx_dpd, phase_diff, coefs_pm):
+ """Calculate the next AM/PM coefficients using the extracted
+ statistic of TX amplitude and phase difference"""
+ tx_dpd, phase_diff = self._discard_small_values(tx_dpd, phase_diff)
+
+ coefs_pm_new = self._pm_fit_poly(tx_dpd, phase_diff)
+
+ coefs_pm_new = coefs_pm + self.learning_rate_pm * (coefs_pm_new - coefs_pm)
+ self._pm_plot_data = (tx_dpd, phase_diff, coefs_pm, coefs_pm_new)
+
+ return coefs_pm_new
+
# The MIT License (MIT)
#
# Copyright (c) 2017 Andreas Steger
+# Copyright (c) 2018 Matthias P. Brandli
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
diff --git a/python/dpd/RX_Agc.py b/python/dpd/RX_Agc.py
index 4700e68..911f3c9 100644
--- a/python/dpd/RX_Agc.py
+++ b/python/dpd/RX_Agc.py
@@ -19,19 +19,19 @@ import dpd.Adapt as Adapt
import dpd.Measure as Measure
class Agc:
- """The goal of the automatic gain control is to set the
- RX gain to a value at which all received amplitudes can
- be detected. This means that the maximum possible amplitude
+ """The goal of the automatic gain control is to set the
+ RX gain to a value at which all received amplitudes can
+ be detected. This means that the maximum possible amplitude
should be quantized at the highest possible digital value.
- A problem we have to face, is that the estimation of the
- maximum amplitude by applying the max() function is very
- unstable. This is due to the maximum’s rareness. Therefore
- we estimate a far more robust value, such as the median,
+ A problem we have to face, is that the estimation of the
+ maximum amplitude by applying the max() function is very
+ unstable. This is due to the maximum’s rareness. Therefore
+ we estimate a far more robust value, such as the median,
and then approximate the maximum amplitude from it.
- Given this, we tune the RX gain in such a way, that the
- received signal fulfills our desired property, of having
+ Given this, we tune the RX gain in such a way, that the
+ received signal fulfills our desired property, of having
all amplitudes properly quantized."""
def __init__(self, measure, adapt, c):
diff --git a/python/dpdce.py b/python/dpdce.py
index e601d9c..18e628b 100755
--- a/python/dpdce.py
+++ b/python/dpdce.py
@@ -85,6 +85,7 @@ from lib import yamlrpc
import numpy as np
import traceback
import os.path
+import glob
from threading import Thread, Lock
from queue import Queue
from dpd.Model import Poly
@@ -156,8 +157,19 @@ command_queue = Queue(maxsize=1)
# Automatic Gain Control for the RX gain
agc = Agc(meas, adapt, c)
+def clear_pngs(results):
+ results['statplot'] = None
+ results['amplot'] = None
+ results['pmplot'] = None
+ pngs = glob.glob(os.path.join(plot_path, "*.png"))
+ for png in pngs:
+ try:
+ os.remove(png)
+ except:
+ results['summary'] += ["failed to delete " + png]
+
def engine_worker():
- extStat = ExtractStatistic(c)
+ extStat = None
try:
while True:
cmd = command_queue.get()
@@ -168,12 +180,13 @@ def engine_worker():
with lock:
results['state'] = 'RX Gain Calibration'
results['stateprogress'] = 0
+ clear_pngs(results)
summary = []
N_ITER = 5
for i in range(N_ITER):
agc_success, agc_summary = agc.run()
- summary += ["calibration run {}:".format(i)] + agc_summary.split("\n")
+ summary += ["Iteration {}:".format(i)] + agc_summary.split("\n")
with lock:
results['stateprogress'] = int((i + 1) * 100/N_ITER)
@@ -191,14 +204,16 @@ def engine_worker():
results['rx_median'] = float(rx_median)
results['state'] = 'Idle'
results['stateprogress'] = 100
- results['summary'] = ["Calibration was done:"] + summary
+ results['summary'] = summary + ["Calibration done"]
elif cmd == "reset":
with lock:
internal_data['n_runs'] = 0
results['state'] = 'Idle'
results['stateprogress'] = 0
results['summary'] = ["Reset"]
- extStat = ExtractStatistic(c)
+ clear_pngs(results)
+ extStat = None
+ model.reset_coefs()
elif cmd == "trigger_run":
with lock:
results['state'] = 'Capture + Model'
@@ -208,12 +223,17 @@ def engine_worker():
while True:
# Get Samples and check gain
txframe_aligned, tx_ts, rxframe_aligned, rx_ts, rx_median, tx_median = meas.get_samples()
- # TODO Check TX median
+
+ if extStat is None:
+ # At first run, we must decide how to create the bins
+ peak_estimated = tx_median * c.median_to_peak
+ extStat = ExtractStatistic(c, peak_estimated)
with lock:
results['stateprogress'] += 5
results['summary'] = ["Captured {} samples".format(len(txframe_aligned)),
- "TX/RX median: {} / {}".format(tx_median, rx_median)]
+ "TX/RX median: {} / {}".format(tx_median, rx_median),
+ extStat.get_bin_info()]
# Extract usable data from measurement
tx, rx, phase_diff, n_per_bin = extStat.extract(txframe_aligned, rxframe_aligned)
@@ -240,7 +260,7 @@ def engine_worker():
else:
with lock:
results['state'] = 'Capture + Model'
- results['stateprogress'] = 60
+ results['stateprogress'] = 80
results['summary'] += ["Training model"]
model.train(tx, rx, phase_diff, lr=Heuristics.get_learning_rate(n_runs))
@@ -257,7 +277,7 @@ def engine_worker():
results['amplot'] = "dpd/" + am_plot_file
results['pmplot'] = "dpd/" + pm_plot_file
results['state'] = 'Capture + Model'
- results['stateprogress'] = 70
+ results['stateprogress'] = 85
results['summary'] += ["Getting DPD data"]
dpddata = model.get_dpd_data()
@@ -266,16 +286,15 @@ def engine_worker():
internal_data['n_runs'] = 0
results['state'] = 'Capture + Model'
- results['stateprogress'] = 80
+ results['stateprogress'] = 90
results['summary'] += ["Reset statistics"]
- extStat = ExtractStatistic(c)
+ extStat = None
with lock:
results['state'] = 'Idle'
results['stateprogress'] = 100
results['summary'] += ["New DPD coefficients calculated"]
-
finally:
with lock:
results['state'] = 'Terminated'
diff --git a/python/gui/static/js/odr-predistortion.js b/python/gui/static/js/odr-predistortion.js
index ff82142..59dcd82 100644
--- a/python/gui/static/js/odr-predistortion.js
+++ b/python/gui/static/js/odr-predistortion.js
@@ -39,13 +39,23 @@ function resultrefresh() {
if (data['statplot']) {
$('#dpdcapturestats').attr('src', data['statplot']);
}
+ else {
+ $('#dpdcapturestats').attr('src', "");
+ }
if (data['amplot']) {
$('#dpdamplot').attr('src', data['amplot']);
}
+ else {
+ $('#dpdamplot').attr('src', "");
+ }
+
if (data['pmplot']) {
$('#dpdpmplot').attr('src', data['pmplot']);
}
+ else {
+ $('#dpdpmplot').attr('src', "");
+ }
});
jqxhr.always(function() {
diff --git a/python/gui/templates/predistortion.html b/python/gui/templates/predistortion.html
index e21c688..d953dff 100644
--- a/python/gui/templates/predistortion.html
+++ b/python/gui/templates/predistortion.html
@@ -42,6 +42,11 @@
<div class="panel-heading">Capture Statistics</div>
<div class="panel-body">
<img id="dpdcapturestats" />
+ </div>
+ </div>
+ <div class="panel panel-default">
+ <div class="panel-heading">AM/AM and AM/PM Model</div>
+ <div class="panel-body">
<img id="dpdamplot" />
<img id="dpdpmplot" />
</div>