#!/usr/bin/env python import numpy as np from scipy import signal, optimize import sys import matplotlib.pyplot as plt import dab_util as du def gen_omega(length): if (length % 2) == 1: raise ValueError("Needs an even length array.") halflength = int(length/2) factor = 2.0 * np.pi / length omega = np.zeros(length, dtype=np.float) for i in range(halflength): omega[i] = factor * i for i in range(halflength, length): omega[i] = factor * (i - length) return omega; def subsample_align(sig, ref_sig): """Do subsample alignment for sig relative to the reference signal ref_sig. The delay between the two must be less than sample Returns the aligned signal""" n = len(sig) if (n % 2) == 1: raise ValueError("Needs an even length signal.") halflen = int(n/2) fft_sig = np.fft.fft(sig) omega = gen_omega(n) def correlate_for_delay(tau): # A subsample offset between two signals corresponds, in the frequency # domain, to a linearly increasing phase shift, whose slope # corresponds to the delay. # # Here, we build this phase shift in rotate_vec, and multiply it with # our signal. rotate_vec = np.exp(1j * tau * omega) # zero-frequency is rotate_vec[0], so rotate_vec[N/2] is the # bin corresponding to the [-1, 1, -1, 1, ...] time signal, which # is both the maximum positive and negative frequency. # I don't remember why we handle it differently. rotate_vec[halflen] = np.cos(np.pi * tau) corr_sig = np.fft.ifft(rotate_vec * fft_sig) # TODO why do we only look at the real part? Because it's faster than # a complex cross-correlation? Clarify! return -np.sum(np.real(corr_sig) * np.real(ref_sig.real)) optim_result = optimize.minimize_scalar(correlate_for_delay, bounds=(-1,1), method='bounded', options={'disp': True}) if optim_result.success: #print("x:") #print(optim_result.x) best_tau = optim_result.x #print("Found subsample delay = {}".format(best_tau)) # Prepare rotate_vec = fft_sig with rotated phase rotate_vec = np.exp(1j * best_tau * omega) rotate_vec[halflen] = np.cos(np.pi * best_tau) return np.fft.ifft(rotate_vec * fft_sig) else: #print("Could not optimize: " + optim_result.message) return np.zeros(0, dtype=np.complex64) if __name__ == "__main__": phaseref_filename = "/home/andreas/dab/ODR-StaticPrecorrection/data/samples/sample_orig_0.iq" phase_ref = np.fromfile(phaseref_filename, np.complex64) delay = 15 n_up = 32 print("Generate signal with delay {}/{} = {}".format(delay, n_up, float(delay)/n_up)) phase_ref_up = signal.resample(phase_ref, phase_ref.shape[0] * n_up) phase_ref_up_late = np.append(np.zeros(delay, dtype=np.complex64), phase_ref_up[:-delay]) phase_ref_late = signal.resample(phase_ref_up_late, phase_ref.shape[0]) phase_ref_realigned = subsample_align(phase_ref_late, phase_ref)