import numpy as np import matplotlib.pyplot as plt import src.dab_util as du def calc_signal_sholder_ratio(fft, sampling_rate, debug = False, debug_path="", suffix=""): fft_size = fft.shape[0] n_sig = (du.freq_to_fft_sample(-du.c["bw"]/2., fft_size, sampling_rate), du.freq_to_fft_sample( du.c["bw"]/2., fft_size, sampling_rate)) sig = np.mean(fft[n_sig[0]:n_sig[1]]) n_noise = (du.freq_to_fft_sample(-3000000., fft_size, sampling_rate), du.freq_to_fft_sample(-2500000, fft_size, sampling_rate)) noise = np.mean(fft[n_noise[0]:n_noise[1]]) n_sholder = (du.freq_to_fft_sample(-1500000, fft_size, sampling_rate), du.freq_to_fft_sample(-du.c["bw"]/2, fft_size, sampling_rate)) sholder = np.mean(fft[n_sholder[0]:n_sholder[1]]) if debug == True: print(n_sig, n_sholder, n_noise) plt.plot(fft) plt.plot((n_sig[0], n_sig[1]), (sig, sig), linewidth=5, color='g') plt.plot((n_noise[0], n_noise[1]), (noise, noise), linewidth=5, color='r') plt.plot((n_sholder[0], n_sholder[1]), (sholder, sholder), linewidth=5, color='y') if debug_path: plt.savefig(debug_path + "/" + str(loss) + suffix + ".png") plt.show() plt.clf() return sholder def calc_signal_sholder_peak_ratio(fft, sampling_rate, debug = False, debug_path="", suffix=""): fft_size = fft.shape[0] n_sig = (du.freq_to_fft_sample(-du.c["bw"]/2., fft_size, sampling_rate), du.freq_to_fft_sample( du.c["bw"]/2., fft_size, sampling_rate)) sig = np.mean(fft[n_sig[0]:n_sig[1]]) n_noise = (du.freq_to_fft_sample(-3000000., fft_size, sampling_rate), du.freq_to_fft_sample(-2500000, fft_size, sampling_rate)) noise = np.mean(fft[n_noise[0]:n_noise[1]]) n_sholder = (du.freq_to_fft_sample(-1500000, fft_size, sampling_rate), du.freq_to_fft_sample(-du.c["bw"]/2, fft_size, sampling_rate)) sholder = np.mean(fft[n_sholder[0]:n_sholder[1]]) loss = sholder/sig if debug == True: print(n_sig, n_sholder, n_noise) plt.plot(fft) plt.plot((n_sig[0], n_sig[1]), (sig, sig), linewidth=5, color='g') plt.plot((n_noise[0], n_noise[1]), (noise, noise), linewidth=5, color='r') plt.plot((n_sholder[0], n_sholder[1]), (sholder, sholder), linewidth=5, color='y') if debug_path: plt.savefig(debug_path + "/" + str(loss) + suffix + ".png") plt.show() plt.clf() return loss def calc_max_in_freq_range(fft, sampling_rate, f_start, f_end, debug = False, debug_path="", suffix=""): fft_size = fft.shape[0] n_sig = (du.freq_to_fft_sample(f_start, fft_size, sampling_rate), du.freq_to_fft_sample(f_end, fft_size, sampling_rate)) sig = np.max(fft[n_sig[0]:n_sig[1]]) if debug == True: print(n_sig) plt.plot(fft) plt.plot((n_sig[0], n_sig[1]), (sig, sig), linewidth=5, color='g') if debug_path: plt.savefig(debug_path + "/" + str(loss) + suffix + ".png") plt.show() plt.clf() return sig def calc_mean_in_freq_range(fft, sampling_rate, f_start, f_end, debug = False, debug_path="", suffix=""): fft_size = fft.shape[0] n_sig = (du.freq_to_fft_sample(f_start, fft_size, sampling_rate), du.freq_to_fft_sample(f_end, fft_size, sampling_rate)) sig = np.mean(fft[n_sig[0]:n_sig[1]]) if debug == True: print(n_sig) plt.plot(fft) plt.plot((n_sig[0], n_sig[1]), (sig, sig), linewidth=5, color='g') if debug_path: plt.savefig(debug_path + "/" + str(loss) + suffix + ".png") plt.show() plt.clf() return sig