diff options
Diffstat (limited to 'src/two_tone_lib.py')
-rw-r--r-- | src/two_tone_lib.py | 41 |
1 files changed, 23 insertions, 18 deletions
diff --git a/src/two_tone_lib.py b/src/two_tone_lib.py index a3c9675..beeb332 100644 --- a/src/two_tone_lib.py +++ b/src/two_tone_lib.py @@ -4,13 +4,15 @@ import matplotlib.pyplot as plt def gen_two_tone(path = "./input.dat", predist = None, par = None, debug = False): period1 = 3.875 period2 = 4 - t_both = 124 + t_both = 124 * 10 assert(t_both / period1 % 1 == 0) assert(t_both / period2 % 1 == 0) t = np.arange(0,t_both) sin1 = np.exp(t * 2j * np.pi * 1./period1) sin2 = np.exp(t * 2j * np.pi * 1./period2) + #sin1 = np.cos(t * np.pi * 1./period1) + #sin2 = np.cos(t * np.pi * 1./period2) sig = sin1 + sin2 if predist is None: @@ -18,7 +20,7 @@ def gen_two_tone(path = "./input.dat", predist = None, par = None, debug = False else: res = predist(sig, par) - res = res / np.max(res) + res = res / np.max(res) * 0.99 res = res.astype(np.complex64) res.tofile(path) @@ -43,33 +45,36 @@ def predist_poly(sig, coefs = []): res += sig * np.abs(sig)**(idx+1) * coef #+1 because first correction term is squared return res -def analyse_power_spec(spec, debug = False, debug_path="", suffix=""): +def analyse_power_spec(spec, threshold=40, debug = False, debug_path="", suffix=""): peak_1 = None peak_2 = None - spec_start = 4096 - spec_end = 8192 - first_peak = spec_start + 2048 - second_peak = spec_start + 2114 delta_freq = 66 + first_peak = 4096 + 2048 + second_peak = 4096 + 2114 + spec_start = first_peak - delta_freq * 10 + spec_end = second_peak + delta_freq * 10 peak_other = [] if debug: plt.plot(spec) - for x in [c * delta_freq + delta_freq//2 for c in range(spec_start//delta_freq)]: - start = spec_start + x + #find peaks + for x in [c * delta_freq + delta_freq//2 for c in range((spec_end - spec_start)//delta_freq)]: + start = spec_start + x end = spec_start + x + delta_freq peak = spec[start:end].max() - if debug: plt.plot((start,end), (peak, peak)) if start < first_peak and end > first_peak: - peak_1 = peak - if debug: plt.plot((start,end), (peak+1, peak+1)) + peak_1 = (start, end, peak) elif start < second_peak and end > second_peak: - peak_2 = peak - if debug: plt.plot((start,end), (peak+1, peak+1)) + peak_2 = (start, end, peak) else: - peak_other.append(peak) - mean_signal = (peak_1 + peak_2) / 2 - mean_others = np.mean(peak_other) - score = mean_signal - mean_others + peak_other.append((start, end, peak)) + mean_signal = (peak_1[2] + peak_2[2]) / 2 + #peak_other = [[s,e,p] for s, e, p in peak_other if mean_signal - p < threshold] + meas = [mean_signal - p for s, e, p in peak_other] + score = np.min(meas) if debug: + plt.plot((peak_1[0],peak_1[1]), (peak_1[2], peak_1[2]), color='g', linewidth=2) + plt.plot((peak_2[0],peak_2[1]), (peak_2[2], peak_2[2]), color='g', linewidth=2) + for start, end, peak in peak_other: + plt.plot((start, end), (peak, peak), color='r', linewidth=2) plt.savefig(debug_path + "/" + str(score) + suffix + ".png") plt.clf() return score |