summaryrefslogtreecommitdiffstats
path: root/src/SampleQueue.h
blob: 09b67c7d63180d2db97a7d503528355fcb2e063f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
/*
   Copyright (C) 2013, 2014, 2015
   Matthias P. Braendli, matthias.braendli@mpb.li

   An implementation for a threadsafe queue using the C++11 thread library
   for audio samples.
*/

#ifndef _SAMPLE_QUEUE_H_
#define _SAMPLE_QUEUE_H_

#define DEBUG_SAMPLE_QUEUE 0

#include <mutex>
#include <thread>
#include <chrono>
#include <condition_variable>
#include <queue>
#include <cassert>
#include <sstream>
#include <cstdio>
#include <cmath>

/* This queue is meant to be used by two threads. One producer
 * that pushes elements into the queue, and one consumer that
 * retrieves the elements.
 *
 * This queue should contain audio sample data, interleaved L/R
 * form, 2bytes per sample. Therefore, the push and pop functions
 * should always place or retrieve data in multiples of
 * bytes_per_sample * number_of_channels
 *
 * The queue has a maximum size. If this size is reached, push()
 * ignores new data.
 *
 * If pop() is called but there is not enough data in the queue,
 * the missing samples are replaced by zeros. pop() will always
 * write the requested length.
 */


/* The template is actually not really tested for anything else
 * than uint8_t
 */
template<typename T>
class SampleQueue
{
public:
    SampleQueue(unsigned int bytes_per_sample,
            unsigned int channels,
            size_t max_size) :
        m_bytes_per_sample(bytes_per_sample),
        m_channels(channels),
        m_max_size(max_size),
        m_overruns(0) {}


    /* Push a bunch of samples into the buffer */
    size_t push(const T *val, size_t len)
    {
        size_t new_size = 0;

        {
            std::lock_guard<std::mutex> lock(m_mutex);

            assert(len % (m_channels * m_bytes_per_sample) == 0);

#if DEBUG_SAMPLE_QUEUE
            fprintf(stdout, "######## push %s %zu, %zu >= %zu\n",
                    (m_queue.size() >= m_max_size) ? "overrun" : "ok",
                    len / 4,
                    m_queue.size() / 4,
                    m_max_size / 4);
#endif

            if (m_queue.size() < m_max_size) {
                for (size_t i = 0; i < len; i++) {
                    m_queue.push_back(val[i]);
                }

                new_size = m_queue.size();
            }
            else {
                m_overruns++;
                new_size = 0;
            }
        }

        m_push_notification.notify_all();

        return new_size;
    }

    size_t size() const
    {
        std::lock_guard<std::mutex> lock(m_mutex);
        return m_queue.size();
    }

    /* Wait until len elements in the queue are available,
     * and then fill the buf. If the timeout_ms (expressed in milliseconds
     * expires), fill the available number of elements.
     * Returns the number
     * of elemets written into buf
     */
    size_t pop_wait(T* buf, size_t len, int timeout_ms)
    {
        assert(len % (m_channels * m_bytes_per_sample) == 0);

#if DEBUG_SAMPLE_QUEUE
        fprintf(stdout, "######## pop_wait %zu\n", len);
#endif
        std::unique_lock<std::mutex> lock(m_mutex);

        auto time_start = std::chrono::steady_clock::now();
        const auto timeout = std::chrono::milliseconds(timeout_ms);

#if 1
        do {
            const auto wait_timeout = std::chrono::milliseconds(10);
            m_push_notification.wait_for(lock, wait_timeout);

#if DEBUG_SAMPLE_QUEUE
                fprintf(stdout, "######## pop_wait %zu need %zu\n",
                        m_queue.size(), len);
#endif

            if (std::chrono::steady_clock::now() - time_start > timeout) {
#if DEBUG_SAMPLE_QUEUE
                fprintf(stdout, "######## pop_wait timeout\n");
#endif
                break;
            }
        } while (m_queue.size() < len);
#else
        while (m_queue.size() < len) {
            lock.unlock();
            std::this_thread::sleep_for(std::chrono::milliseconds(1));
            lock.lock();
        }
#endif

        size_t num_to_copy = (m_queue.size() < len) ?
            m_queue.size() : len;

        std::copy(
                m_queue.begin(),
                m_queue.begin() + num_to_copy,
                buf);

        m_queue.erase(m_queue.begin(), m_queue.begin() + num_to_copy);

        lock.unlock();

#if DEBUG_SAMPLE_QUEUE
        fprintf(stdout, "######## pop_wait returns %zu\n", num_to_copy);
#endif
        return num_to_copy;
    }

    /* Get up to len elements, place them into the buf array
     * Returns the number of elements it was able to take
     * from the queue
     */
    size_t pop(T* buf, size_t len)
    {
        size_t ovr;
        return pop(buf, len, ovr);
    }

    /* Get up to len elements, place them into the buf array.
     * Also update the overrun variable with the information
     * of how many overruns we saw since the last pop.
     * Returns the number of elements it was able to take
     * from the queue
     */
    size_t pop(T* buf, size_t len, size_t* overruns)
    {
        std::lock_guard<std::mutex> lock(m_mutex);

        assert(len % (m_channels * m_bytes_per_sample) == 0);

#if DEBUG_SAMPLE_QUEUE
        fprintf(stdout, "######## pop %zu (%zu), %zu overruns: ",
                len / 4,
                m_queue.size() / 4,
                m_overruns);
#endif
        *overruns = m_overruns;
        m_overruns = 0;

        size_t ret = 0;

        if (m_queue.size() < len) {
            /* Not enough data in queue, fill with zeros */

            size_t i;
            for (i = 0; i < m_queue.size(); i++) {
                buf[i] = m_queue[i];
            }

            ret = i;

            for (; i < len; i++) {
                buf[i] = 0;
            }

            m_queue.resize(0);

#if DEBUG_SAMPLE_QUEUE
            fprintf(stdout, "after short pop %zu (%zu)\n",
                len / 4,
                m_queue.size() / 4);
#endif
        }
        else {
            /* Queue contains enough data */

            for (size_t i = 0; i < len; i++) {
                buf[i] = m_queue[i];
            }

            ret = len;

            m_queue.erase(m_queue.begin(), m_queue.begin() + len);

#if DEBUG_SAMPLE_QUEUE
            fprintf(stdout, "after ok pop %zu (%zu)\n",
                len / 4,
                m_queue.size() / 4);
#endif
        }

        return ret;
    }

private:
    std::deque<T> m_queue;
    mutable std::mutex m_mutex;
    std::condition_variable m_push_notification;

    unsigned int m_channels;
    unsigned int m_bytes_per_sample;
    size_t m_max_size;

    /* Counter to keep track of number of overruns between calls
     * to pop()
     */
    size_t m_overruns;
};

#endif