1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
|
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include "common.h"
#include "options.h"
#include "encoder.h"
#include "mem.h"
#include "fft.h"
#include "ath.h"
#include "psycho_4.h"
/****************************************************************
PSYCHO_4 by MFC Feb 2003
This is a cleaned up implementation of psy model 2.
This is basically because I was sick of the inconsistencies between
the notation in the ISO docs and in the sourcecode.
I've nicked a bunch of stuff from LAME to make this a bit easier to grok
- ATH values (this also overcomes the lack of mpeg-2 tables
which meant that LSF never had proper values)
- freq2bark() to convert frequencies directly to bark values.
- spreading_function() isolated the calculation of the spreading function.
Basically the same code as before, just isolated in its own function.
LAME seem to does some extra tweaks to the ISO1117s model.
Not really sure if they help or hinder, so I've commented them out (#ifdef LAME)
NB: Because of some of the tweaks to bark value calculation etc, it is now possible
to have 64 CBANDS. There's no real limit on the actual number of paritions.
I wonder if it's worth experimenting with really higher numbers? Probably won't make
that much difference to the final SNR values, but it's something worth trying
Maybe CBANDS should be a dynamic value, calculated by the psycho_init function
CBANDS definition has been changed in encoder.h from 63 to 64
****************************************************************/
/* The static variables "r", "phi_sav", "new", "old" and "oldest" have
to be remembered for the unpredictability measure. For "r" and
"phi_sav", the first index from the left is the channel select and
the second index is the "age" of the data. */
static int new = 0, old = 1, oldest = 0;
static int init = 0;
/* NMT is a constant 5.5dB. ISO11172 Sec D.2.4.h */
static double NMT = 5.5;
/* The index into this array is a bark value
This array gives the 'minval' values from ISO11172 Tables D.3.x */
static FLOAT minval[27] = {
0.0, /* bark = 0 */
20.0, /* 1 */
20.0, /* 2 */
20.0, /* 3 */
20.0, /* 4 */
20.0, /* 5 */
17.0, /* 6 */
15.0, /* 7 */
10.0, /* 8 */
7.0, /* 9 */
4.4, /* 10 */
4.5, 4.5, 4.5,4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, /* 11 - 25 */
3.5 /* 26 */
};
static FLOAT *grouped_c, *grouped_e, *nb, *cb, *tb, *ecb, *bc;
static FLOAT *wsamp_r, *phi, *energy;
static FLOAT *c, *bark, *thr;
static F32 *snrtmp;
static int *numlines;
static int *partition;
static FLOAT *cbval, *rnorm;
static FLOAT *window;
static FLOAT *ath;
static double *tmn;
static FCB *s;
static FHBLK *lthr;
static F2HBLK *r, *phi_sav;
#define TRIGTABLESIZE 3142
#define TRIGTABLESCALE 1000.0
static FLOAT cos_table[TRIGTABLESIZE];
static FLOAT sin_table[TRIGTABLESIZE];
void psycho_4_trigtable_init(void) {
int i;
for (i=0;i<TRIGTABLESIZE;i++) {
cos_table[i] = cos((double)i/TRIGTABLESCALE);
sin_table[i] = sin((double)i/TRIGTABLESCALE);
}
}
FLOAT psycho_4_cos(FLOAT phi) {
int index;
int sign=1;
index = (int)(fabs(phi) * TRIGTABLESCALE);
while (index>=TRIGTABLESIZE) {
index -= TRIGTABLESIZE;
sign*=-1;
}
return(sign * cos_table[index]);
}
FLOAT psycho_4_sin(FLOAT phi) {
int index;
int sign=1;
index = (int)(fabs(phi) * TRIGTABLESCALE);
while (index>=TRIGTABLESIZE) {
index -= TRIGTABLESIZE;
sign*=-1;
}
if (phi<0)
return(-1 * sign * sin_table[index]);
return(sign * sin_table[index]);
}
void psycho_4 (short int *buffer, short int savebuf[1056], int chn,
double *smr, double sfreq, options *glopts)
/* to match prototype : FLOAT args are always double */
{
unsigned int run, i, j, k;
FLOAT r_prime, phi_prime;
FLOAT npart, epart;
if (init == 0) {
psycho_4_init (sfreq, glopts);
init++;
}
for (run = 0; run < 2; run++) {
/* Net offset is 480 samples (1056-576) for layer 2; this is because one must
stagger input data by 256 samples to synchronize psychoacoustic model with
filter bank outputs, then stagger so that center of 1024 FFT window lines
up with center of 576 "new" audio samples.
flush = 384*3.0/2.0; = 576
syncsize = 1056;
sync_flush = syncsize - flush; 480
BLKSIZE = 1024 */
for (j = 0; j < 480; j++) {
savebuf[j] = savebuf[j + 576];
wsamp_r[j] = window[j] * ((FLOAT) savebuf[j]);
}
for (; j < 1024; j++) {
savebuf[j] = *buffer++;
wsamp_r[j] = window[j] * ((FLOAT) savebuf[j]);
}
for (; j < 1056; j++)
savebuf[j] = *buffer++;
/* Compute FFT */
psycho_2_fft (wsamp_r, energy, phi);
/* calculate the unpredictability measure, given energy[f] and phi[f]
(the age pointers [new/old/oldest] are reset automatically on the second pass */
{
if (new == 0) {
new = 1;
oldest = 1;
} else {
new = 0;
oldest = 0;
}
if (old == 0)
old = 1;
else
old = 0;
}
for (j = 0; j < HBLKSIZE; j++) {
#ifdef NEWATAN
double temp1, temp2, temp3;
r_prime = 2.0 * r[chn][old][j] - r[chn][oldest][j];
phi_prime = 2.0 * phi_sav[chn][old][j] - phi_sav[chn][oldest][j];
r[chn][new][j] = sqrt ((double) energy[j]);
phi_sav[chn][new][j] = phi[j];
{
temp1 =
r[chn][new][j] * psycho_4_cos(phi[j]) -
r_prime * psycho_4_cos(phi_prime);
temp2 =
r[chn][new][j] * psycho_4_sin(phi[j]) -
r_prime * psycho_4_sin(phi_prime);
//fprintf(stdout,"[%5.2f %5.2f] [%5.2f %5.2f]\n",temp1, mytemp1, temp2, mytemp2);
}
temp3 = r[chn][new][j] + fabs ((double) r_prime);
if (temp3 != 0)
c[j] = sqrt (temp1 * temp1 + temp2 * temp2) / temp3;
else
c[j] = 0;
#else
double temp1, temp2, temp3;
r_prime = 2.0 * r[chn][old][j] - r[chn][oldest][j];
phi_prime = 2.0 * phi_sav[chn][old][j] - phi_sav[chn][oldest][j];
r[chn][new][j] = sqrt ((double) energy[j]);
phi_sav[chn][new][j] = phi[j];
temp1 =
r[chn][new][j] * cos ((double) phi[j]) -
r_prime * cos ((double) phi_prime);
temp2 =
r[chn][new][j] * sin ((double) phi[j]) -
r_prime * sin ((double) phi_prime);
temp3 = r[chn][new][j] + fabs ((double) r_prime);
if (temp3 != 0)
c[j] = sqrt (temp1 * temp1 + temp2 * temp2) / temp3;
else
c[j] = 0;
#endif
}
/* For each partition, sum all the energy in that partition - grouped_e
and calculated the energy-weighted unpredictability measure - grouped_c
ISO 11172 Section D.2.4.e */
for (j = 1; j < CBANDS; j++) {
grouped_e[j] = 0;
grouped_c[j] = 0;
}
grouped_e[0] = energy[0];
grouped_c[0] = energy[0] * c[0];
for (j = 1; j < HBLKSIZE; j++) {
grouped_e[partition[j]] += energy[j];
grouped_c[partition[j]] += energy[j] * c[j];
}
/* convolve the grouped energy-weighted unpredictability measure
and the grouped energy with the spreading function
ISO 11172 D.2.4.f */
for (j = 0; j < CBANDS; j++) {
ecb[j] = 0;
cb[j] = 0;
for (k = 0; k < CBANDS; k++) {
if (s[j][k] != 0.0) {
ecb[j] += s[j][k] * grouped_e[k];
cb[j] += s[j][k] * grouped_c[k];
}
}
if (ecb[j] != 0)
cb[j] = cb[j] / ecb[j];
else
cb[j] = 0;
}
/* Convert cb to tb (the tonality index)
ISO11172 SecD.2.4.g */
for (i=0;i<CBANDS;i++) {
if (cb[i] < 0.05)
cb[i] = 0.05;
else if (cb[i] > 0.5)
cb[i] = 0.5;
tb[i] = -0.301029996 - 0.434294482 * log((double) cb[i]);
}
/* Calculate the required SNR for each of the frequency partitions
ISO 11172 Sect D.2.4.h */
for (j = 0; j < CBANDS; j++) {
FLOAT SNR, SNRtemp;
SNRtemp = tmn[j] * tb[j] + NMT * (1.0 - tb[j]);
SNR = MAX(SNRtemp, minval[(int)cbval[j]]);
bc[j] = exp ((double) -SNR * LN_TO_LOG10);
}
/* Calculate the permissible noise energy level in each of the frequency
partitions.
This section used to have pre-echo control but only for LayerI
ISO 11172 Sec D.2.4.k - Spread the threshold energy over FFT lines */
for (j = 0; j < CBANDS; j++) {
if (rnorm[j] && numlines[j])
nb[j] = ecb[j] * bc[j] / (rnorm[j] * numlines[j]);
else
nb[j] = 0;
}
/* ISO11172 Sec D.2.4.l - thr[] the final energy threshold of audibility */
for (j = 0; j < HBLKSIZE; j++)
thr[j] = MAX(nb[partition[j]], ath[j]);
/* Translate the 512 threshold values to the 32 filter bands of the coder
Using ISO 11172 Table D.5 and Section D.2.4.n */
for (j = 0; j < 193; j += 16) {
/* WIDTH = 0 */
npart = 60802371420160.0;
epart = 0.0;
for (k = 0; k < 17; k++) {
if (thr[j + k] < npart)
npart = thr[j + k]; /* For WIDTH==0, find the minimum noise, and
later multiply by the number of indexes i.e. 17 */
epart += energy[j + k];
}
snrtmp[run][j / 16] = 4.342944819 * log((double)(epart/(npart*17.0)));
}
for (j = 208; j < (HBLKSIZE - 1); j += 16) {
/* WIDTH = 1 */
npart = 0.0;
epart = 0.0;
for (k = 0; k < 17; k++) {
npart += thr[j + k]; /* For WIDTH==1, sum the noise */
epart += energy[j + k];
}
snrtmp[run][j / 16] = 4.342944819 * log ((double) (epart/npart));
}
}
/* Pick the maximum value of the two runs ISO 11172 Sect D.2.1 */
for (i = 0; i < 32; i++)
smr[i] = MAX(snrtmp[0][i], snrtmp[1][i]);
}
/********************************
* init psycho model 2
********************************/
void psycho_4_init (double sfreq, options *glopts)
{
int i, j;
/* Allocate memory for all the static variables */
psycho_4_allocmem();
/* Set up the SIN/COS tables */
psycho_4_trigtable_init();
/* calculate HANN window coefficients */
for (i = 0; i < BLKSIZE; i++)
window[i] = 0.5 * (1 - cos (2.0 * PI * (i - 0.5) / BLKSIZE));
/* For each FFT line from 0(DC) to 512(Nyquist) calculate
- bark : the bark value of this fft line
- ath : the absolute threshold of hearing for this line [ATH]
Since it is a 1024 point FFT, each line in the fft corresponds
to 1/1024 of the total frequency.
Line 0 should correspond to DC - which doesn't really have a ATH afaik
Line 1 should be 1/1024th of the Sampling Freq
Line 512 should be the nyquist freq */
for (i=0; i<HBLKSIZE; i++) {
FLOAT freq = i * sfreq/BLKSIZE;
bark[i] = freq2bark(freq);
/* The ath tables in the dist10 code seem to be a little out of kilter.
they seem to start with index 0 corresponding to (sampling freq)/1024.
When in doubt, i'm going to assume that the dist10 code is wrong. MFC Feb2003 */
ath[i] = ATH_energy(freq,glopts->athlevel);
//fprintf(stdout,"%.2f ",ath[i]);
}
/* Work out the partitions
Starting from line 0, all lines within 0.33 of the starting
bark are added to the same partition. When a line is greater
by 0.33 of a bark, start a new partition. */
int partition_count = 0; /* keep a count of the partitions */
int cbase = 0; /* current base index for the bark range calculation */
for (i=0;i<HBLKSIZE;i++) {
if ((bark[i] - bark[cbase]) > 0.33) { /* 1/3 critical band? */
/* this frequency line is too different from the starting line,
(in terms of the bark distance)
so close that previous partition, and make this line the first
member of the next partition */
cbase = i; /* Start the new partition from this frequency */
partition_count++;
}
/* partition[i] tells us which partition the i'th frequency line is in */
partition[i] = partition_count;
/* keep a count of how many frequency lines are in each partition */
numlines[partition_count]++;
}
/* For each partition within the frequency space,
calculate the average bark value - cbval [central bark value] */
for (i=0;i<HBLKSIZE;i++)
cbval[partition[i]] += bark[i]; /* sum up all the bark values */
for (i=0;i<CBANDS;i++) {
if (numlines[i] != 0)
cbval[i] /= numlines[i]; /* divide by the number of values */
else {
cbval[i]=0; /* this isn't a partition */
}
}
/* Calculate the spreading function. ISO 11172 Section D.2.3 */
for (i=0;i<CBANDS;i++) {
for (j=0;j<CBANDS;j++) {
s[i][j] = psycho_4_spreading_function( 1.05 * (cbval[i] - cbval[j]) );
rnorm[i] += s[i][j]; /* sum the spreading function values for each partition so that
they can be normalised later on */
}
}
/* Calculate Tone Masking Noise values. ISO 11172 Tables D.3.x */
for (j = 0; j < CBANDS; j++)
tmn[j] = MAX(15.5+cbval[j], 24.5);
if (glopts->verbosity > 10) {
/* Dump All the Values to STDOUT */
int wlow, whigh=0;
int ntot=0;
fprintf(stdout,"psy model 4 init\n");
fprintf(stdout,"index \tnlines \twlow \twhigh \tbval \tminval \ttmn\n");
for (i=0;i<CBANDS;i++)
if (numlines[i] != 0) {
wlow = whigh+1;
whigh = wlow + numlines[i] - 1;
fprintf(stdout,"%i \t%i \t%i \t%i \t%5.2f \t%4.2f \t%4.2f\n",i+1, numlines[i],wlow, whigh, cbval[i],minval[(int)cbval[i]],tmn[i]);
ntot += numlines[i];
}
fprintf(stdout,"total lines %i\n",ntot);
exit(0);
}
}
/* The spreading function. Values returned in units of energy
Argument 'bark' is the difference in bark values between the
centre of two partitions.
This has been taken from LAME. MFC Feb 2003 */
FLOAT8 psycho_4_spreading_function(FLOAT8 bark) {
FLOAT8 tempx,x,tempy,temp;
tempx = bark;
#ifdef LAME
/* MP3 standard actually spreads these values a little more */
if (tempx>=0) tempx *= 3;
else tempx *=1.5;
#endif
if(tempx>=0.5 && tempx<=2.5)
{
temp = tempx - 0.5;
x = 8.0 * (temp*temp - 2.0 * temp);
}
else x = 0.0;
tempx += 0.474;
tempy = 15.811389 + 7.5*tempx - 17.5*sqrt(1.0+tempx*tempx);
if (tempy <= -60.0) return 0.0;
tempx = exp( (x + tempy)*LN_TO_LOG10 );
#ifdef LAME
/* I'm not sure where the magic value of 0.6609193 comes from.
toolame will just keep using the rnorm to normalise the spreading function
MFC Feb 2003 */
/* Normalization. The spreading function should be normalized so that:
+inf
/
| s3 [ bark ] d(bark) = 1
/
-inf
*/
tempx /= .6609193;
#endif
return tempx;
}
void psycho_4_allocmem() {
grouped_c = (FLOAT *) mem_alloc (sizeof (FCB), "grouped_c");
grouped_e = (FLOAT *) mem_alloc (sizeof (FCB), "grouped_e");
nb = (FLOAT *) mem_alloc (sizeof (FCB), "nb");
cb = (FLOAT *) mem_alloc (sizeof (FCB), "cb");
tb = (FLOAT *) mem_alloc (sizeof (FCB), "tb");
ecb = (FLOAT *) mem_alloc (sizeof (FCB), "ecb");
bc = (FLOAT *) mem_alloc (sizeof (FCB), "bc");
wsamp_r = (FLOAT *) mem_alloc (sizeof (FBLK), "wsamp_r");
phi = (FLOAT *) mem_alloc (sizeof (FBLK), "phi");
energy = (FLOAT *) mem_alloc (sizeof (FBLK), "energy");
c = (FLOAT *) mem_alloc (sizeof (FHBLK), "c");
bark = (FLOAT *) mem_alloc (sizeof (FHBLK), "bark");
thr = (FLOAT *) mem_alloc (sizeof (FHBLK), "thr");
snrtmp = (F32 *) mem_alloc (sizeof (F2_32), "snrtmp");
numlines = (int *) mem_alloc (sizeof (ICB), "numlines");
partition = (int *) mem_alloc (sizeof (IHBLK), "partition");
cbval = (FLOAT *) mem_alloc (sizeof (FCB), "cbval");
rnorm = (FLOAT *) mem_alloc (sizeof (FCB), "rnorm");
window = (FLOAT *) mem_alloc (sizeof (FBLK), "window");
ath = (FLOAT *) mem_alloc (sizeof (FHBLK), "ath");
tmn = (double *) mem_alloc (sizeof (DCB), "tmn");
s = (FCB *) mem_alloc (sizeof (FCBCB), "s");
lthr = (FHBLK *) mem_alloc (sizeof (F2HBLK), "lthr");
r = (F2HBLK *) mem_alloc (sizeof (F22HBLK), "r");
phi_sav = (F2HBLK *) mem_alloc (sizeof (F22HBLK), "phi_sav");
}
|