1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
|
#include <stdio.h>
#include <math.h>
#include "common.h"
#include "encoder.h"
#include "mem.h"
#include "fft.h"
#include "psycho_1.h"
#include "psycho_1_priv.h"
#define DBTAB 1000
double dbtable[DBTAB];
/**********************************************************************
This module implements the psychoacoustic model I for the
MPEG encoder layer II. It uses simplified tonal and noise masking
threshold analysis to generate SMR for the encoder bit allocation
routine.
**********************************************************************/
void psycho_1 (short buffer[2][1152], double scale[2][SBLIMIT],
double ltmin[2][SBLIMIT], frame_info * frame)
{
frame_header *header = frame->header;
int nch = frame->nch;
int sblimit = frame->sblimit;
int k, i, tone = 0, noise = 0;
static char init = 0;
static int off[2] = { 256, 256 };
double sample[FFT_SIZE];
double spike[2][SBLIMIT];
static D1408 *fft_buf;
static mask_ptr power;
static g_ptr ltg;
FLOAT energy[FFT_SIZE];
/* call functions for critical boundaries, freq. */
if (!init) { /* bands, bark values, and mapping */
fft_buf = (D1408 *) mem_alloc ((long) sizeof (D1408) * 2, "fft_buf");
power = (mask_ptr) mem_alloc (sizeof (mask) * HAN_SIZE, "power");
if (header->version == MPEG_AUDIO_ID) {
psycho_1_read_cbound (header->lay, header->sampling_frequency);
psycho_1_read_freq_band (<g, header->lay, header->sampling_frequency);
} else {
psycho_1_read_cbound (header->lay, header->sampling_frequency + 4);
psycho_1_read_freq_band (<g, header->lay, header->sampling_frequency + 4);
}
psycho_1_make_map (power, ltg);
for (i = 0; i < 1408; i++)
fft_buf[0][i] = fft_buf[1][i] = 0;
psycho_1_init_add_db (); /* create the add_db table */
init = 1;
}
for (k = 0; k < nch; k++) {
/* check pcm input for 3 blocks of 384 samples */
/* sami's speedup, added in 02j
saves about 4% overall during an encode */
int ok = off[k] % 1408;
for (i = 0; i < 1152; i++) {
fft_buf[k][ok++] = (double) buffer[k][i] / SCALE;
if (ok >= 1408)
ok = 0;
}
ok = (off[k] + 1216) % 1408;
for (i = 0; i < FFT_SIZE; i++) {
sample[i] = fft_buf[k][ok++];
if (ok >= 1408)
ok = 0;
}
off[k] += 1152;
off[k] %= 1408;
psycho_1_hann_fft_pickmax (sample, power, &spike[k][0], energy);
psycho_1_tonal_label (power, &tone);
psycho_1_noise_label (power, &noise, ltg, energy);
//psycho_1_dump(power, &tone, &noise) ;
psycho_1_subsampling (power, ltg, &tone, &noise);
psycho_1_threshold (power, ltg, &tone, &noise,
bitrate[header->version][header->bitrate_index] / nch);
psycho_1_minimum_mask (ltg, <min[k][0], sblimit);
psycho_1_smr (<min[k][0], &spike[k][0], &scale[k][0], sblimit);
}
}
int crit_band;
int *cbound;
int sub_size;
void psycho_1_read_cbound (int lay, int freq)
/* this function reads in critical band boundaries */
{
#include "critband.h"
//static const int FirstCriticalBand[7][27] = {...
int i, k;
if ((lay < 1) || (lay > 2)) {
printf ("Internal error (read_cbound())\n");
return;
}
if ((freq < 0) || (freq > 6) || (freq == 3)) {
printf ("Internal error (read_cbound())\n");
return;
}
crit_band = SecondCriticalBand[freq][0];
cbound = (int *) mem_alloc (sizeof (int) * crit_band, "cbound");
for (i = 0; i < crit_band; i++) {
k = SecondCriticalBand[freq][i + 1];
if (k != 0) {
cbound[i] = k;
} else {
printf ("Internal error (read_cbound())\n");
return;
}
}
}
void psycho_1_read_freq_band (ltg, lay, freq) /* this function reads in */
int lay, freq; /* frequency bands and bark */
g_ptr *ltg; /* values */
{
#include "freqtable.h"
int i, k;
if ((freq < 0) || (freq > 6) || (freq == 3)) {
printf ("Internal error (read_freq_band())\n");
return;
}
/* read input for freq. subbands */
sub_size = SecondFreqEntries[freq] + 1;
*ltg = (g_ptr) mem_alloc (sizeof (g_thres) * sub_size, "ltg");
(*ltg)[0].line = 0; /* initialize global masking threshold */
(*ltg)[0].bark = 0.0;
(*ltg)[0].hear = 0.0;
for (i = 1; i < sub_size; i++) {
k = SecondFreqSubband[freq][i - 1].line;
if (k != 0) {
(*ltg)[i].line = k;
(*ltg)[i].bark = SecondFreqSubband[freq][i - 1].bark;
(*ltg)[i].hear = SecondFreqSubband[freq][i - 1].hear;
} else {
printf ("Internal error (read_freq_band())\n");
return;
}
}
}
void psycho_1_make_map (mask power[HAN_SIZE], g_thres * ltg)
/* this function calculates the global masking threshold */
{
int i, j;
for (i = 1; i < sub_size; i++)
for (j = ltg[i - 1].line; j <= ltg[i].line; j++)
power[j].map = i;
}
void psycho_1_init_add_db (void)
{
int i;
double x;
for (i = 0; i < DBTAB; i++) {
x = (double) i / 10.0;
dbtable[i] = 10 * log10 (1 + pow (10.0, x / 10.0)) - x;
}
}
double add_db (double a, double b)
{
/* MFC - if the difference between a and b is large (>99), then just return the
largest one. (about 10% of the time)
- For differences between 0 and 99, return the largest value, but add
in a pre-calculated difference value.
- the value 99 was chosen arbitarily.
- maximum (a-b) i've seen is 572 */
FLOAT fdiff;
int idiff;
fdiff = (10.0 * (a - b));
if (fdiff > 990.0) {
return a;
}
if (fdiff < -990.0) {
return (b);
}
idiff = (int) fdiff;
if (idiff >= 0) {
return (a + dbtable[idiff]);
}
return (b + dbtable[-idiff]);
}
/****************************************************************
* Window the samples then,
* Fast Fourier transform of the input samples.
*
* ( call the FHT-based fft() in fft.c )
*
*
****************************************************************/
void psycho_1_hann_fft_pickmax (double sample[FFT_SIZE], mask power[HAN_SIZE],
double spike[SBLIMIT], FLOAT energy[FFT_SIZE])
{
FLOAT x_real[FFT_SIZE];
register int i, j;
register double sqrt_8_over_3;
static int init = 0;
static double *window;
double sum;
if (!init) { /* calculate window function for the Fourier transform */
window = (double *) mem_alloc (sizeof (DFFT), "window");
sqrt_8_over_3 = pow (8.0 / 3.0, 0.5);
for (i = 0; i < FFT_SIZE; i++) {
/* Hann window formula */
window[i] =
sqrt_8_over_3 * 0.5 * (1 -
cos (2.0 * PI * i / (FFT_SIZE))) / FFT_SIZE;
}
init = 1;
}
for (i = 0; i < FFT_SIZE; i++)
x_real[i] = (FLOAT) (sample[i] * window[i]);
psycho_1_fft (x_real, energy, FFT_SIZE);
for (i = 0; i < HAN_SIZE; i++) { /* calculate power density spectrum */
if (energy[i] < 1E-20)
power[i].x = -200.0 + POWERNORM;
else
power[i].x = 10 * log10 (energy[i]) + POWERNORM;
power[i].next = STOP;
power[i].type = FALSE;
}
/* Calculate the sum of spectral component in each subband from bound 4-16 */
#define CF 1073741824 /* pow(10, 0.1*POWERNORM) */
#define DBM 1E-20 /* pow(10.0, 0.1*DBMIN */
for (i = 0; i < HAN_SIZE; spike[i >> 4] = 10.0 * log10 (sum), i += 16) {
for (j = 0, sum = DBM; j < 16; j++)
sum += CF * energy[i + j];
}
}
/****************************************************************
*
* This function labels the tonal component in the power
* spectrum.
*
****************************************************************/
void psycho_1_tonal_label (mask power[HAN_SIZE], int *tone)
/* this function extracts (tonal) sinusoidals from the spectrum */
{
int i, j, last = LAST, first, run, last_but_one = LAST; /* dpwe */
double max;
*tone = LAST;
for (i = 2; i < HAN_SIZE - 12; i++) {
if (power[i].x > power[i - 1].x && power[i].x >= power[i + 1].x) {
power[i].type = TONE;
power[i].next = LAST;
if (last != LAST)
power[last].next = i;
else
first = *tone = i;
last = i;
}
}
last = LAST;
first = *tone;
*tone = LAST;
while ((first != LAST) && (first != STOP)) { /* the conditions for the tonal */
if (first < 3 || first > 500)
run = 0; /* otherwise k+/-j will be out of bounds */
else if (first < 63)
run = 2; /* components in layer II, which */
else if (first < 127)
run = 3; /* are the boundaries for calc. */
else if (first < 255)
run = 6; /* the tonal components */
else
run = 12;
max = power[first].x - 7; /* after calculation of tonal */
for (j = 2; j <= run; j++) /* components, set to local max */
if (max < power[first - j].x || max < power[first + j].x) {
power[first].type = FALSE;
break;
}
if (power[first].type == TONE) { /* extract tonal components */
int help = first;
if (*tone == LAST)
*tone = first;
while ((power[help].next != LAST) && (power[help].next - first) <= run)
help = power[help].next;
help = power[help].next;
power[first].next = help;
if ((first - last) <= run) {
if (last_but_one != LAST)
power[last_but_one].next = first;
}
if (first > 1 && first < 500) { /* calculate the sum of the */
double tmp; /* powers of the components */
tmp = add_db (power[first - 1].x, power[first + 1].x);
power[first].x = add_db (power[first].x, tmp);
}
for (j = 1; j <= run; j++) {
power[first - j].x = power[first + j].x = DBMIN;
power[first - j].next = power[first + j].next = STOP;
power[first - j].type = power[first + j].type = FALSE;
}
last_but_one = last;
last = first;
first = power[first].next;
} else {
int ll;
if (last == LAST); /* *tone = power[first].next; dpwe */
else
power[last].next = power[first].next;
ll = first;
first = power[first].next;
power[ll].next = STOP;
}
}
}
/****************************************************************
*
* This function groups all the remaining non-tonal
* spectral lines into critical band where they are replaced by
* one single line.
*
****************************************************************/
void psycho_1_noise_label (mask * power, int *noise, g_thres * ltg,
FLOAT energy[FFT_SIZE])
{
int i, j, centre, last = LAST;
double index, weight, sum;
/* calculate the remaining spectral */
for (i = 0; i < crit_band - 1; i++) { /* lines for non-tonal components */
for (j = cbound[i], weight = 0.0, sum = DBMIN; j < cbound[i + 1]; j++) {
if (power[j].type != TONE) {
if (power[j].x != DBMIN) {
sum = add_db (power[j].x, sum);
/* Weight is used in finding the geometric mean of the noise energy within a subband */
weight += CF * energy[j] * (double) (j - cbound[i]) / (double) (cbound[i + 1] - cbound[i]); /* correction */
power[j].x = DBMIN;
}
} /* check to see if the spectral line is low dB, and if */
} /* so replace the center of the critical band, which is */
/* the center freq. of the noise component */
if (sum <= DBMIN)
centre = (cbound[i + 1] + cbound[i]) / 2;
else {
/* fprintf(stderr, "%i [%f %f] -", count++,weight/pow(10.0,0.1*sum), weight*pow(10.0,-0.1*sum)); */
index = weight * pow (10.0, -0.1 * sum);
centre =
cbound[i] + (int) (index * (double) (cbound[i + 1] - cbound[i]));
}
/* locate next non-tonal component until finished; */
/* add to list of non-tonal components */
/* Masahiro Iwadare's fix for infinite looping problem? */
if (power[centre].type == TONE) {
if (power[centre + 1].type == TONE) {
centre++;
} else
centre--;
}
if (last == LAST)
*noise = centre;
else {
power[centre].next = LAST;
power[last].next = centre;
}
power[centre].x = sum;
power[centre].type = NOISE;
last = centre;
}
}
/****************************************************************
*
* This function reduces the number of noise and tonal
* component for further threshold analysis.
*
****************************************************************/
void psycho_1_subsampling (mask power[HAN_SIZE], g_thres * ltg, int *tone, int *noise)
{
int i, old;
i = *tone;
old = STOP; /* calculate tonal components for */
while ((i != LAST) && (i != STOP))
{ /* reduction of spectral lines */
if (power[i].x < ltg[power[i].map].hear) {
power[i].type = FALSE;
power[i].x = DBMIN;
if (old == STOP)
*tone = power[i].next;
else
power[old].next = power[i].next;
} else
old = i;
i = power[i].next;
}
i = *noise;
old = STOP; /* calculate non-tonal components for */
while ((i != LAST) && (i != STOP)) { /* reduction of spectral lines */
if (power[i].x < ltg[power[i].map].hear) {
power[i].type = FALSE;
power[i].x = DBMIN;
if (old == STOP)
*noise = power[i].next;
else
power[old].next = power[i].next;
} else
old = i;
i = power[i].next;
}
i = *tone;
old = STOP;
while ((i != LAST) && (i != STOP))
{ /* if more than one */
if (power[i].next == LAST)
break; /* tonal component */
if (ltg[power[power[i].next].map].bark - /* is less than .5 */
ltg[power[i].map].bark < 0.5) { /* bark, take the */
if (power[power[i].next].x > power[i].x) { /* maximum */
if (old == STOP)
*tone = power[i].next;
else
power[old].next = power[i].next;
power[i].type = FALSE;
power[i].x = DBMIN;
i = power[i].next;
} else {
power[power[i].next].type = FALSE;
power[power[i].next].x = DBMIN;
power[i].next = power[power[i].next].next;
old = i;
}
} else {
old = i;
i = power[i].next;
}
}
}
/****************************************************************
*
* This function calculates the individual threshold and
* sum with the quiet threshold to find the global threshold.
*
****************************************************************/
/* mainly just changed the way range checking was done MFC Nov 1999 */
void psycho_1_threshold (mask power[HAN_SIZE], g_thres * ltg, int *tone, int *noise,
int bit_rate)
{
int k, t;
double dz, tmps, vf;
for (k = 1; k < sub_size; k++) {
ltg[k].x = DBMIN;
t = *tone; /* calculate individual masking threshold for */
while ((t != LAST) && (t != STOP))
{ /* components in order to find the global */
dz = ltg[k].bark - ltg[power[t].map].bark; /* distance of bark value */
if (dz >= -3.0 && dz < 8.0) {
tmps = -1.525 - 0.275 * ltg[power[t].map].bark - 4.5 + power[t].x;
/* masking function for lower & upper slopes */
if (dz < -1)
vf = 17 * (dz + 1) - (0.4 * power[t].x + 6);
else if (dz < 0)
vf = (0.4 * power[t].x + 6) * dz;
else if (dz < 1)
vf = (-17 * dz);
else
vf = -(dz - 1) * (17 - 0.15 * power[t].x) - 17;
ltg[k].x = add_db (ltg[k].x, tmps + vf);
}
t = power[t].next;
}
t = *noise; /* calculate individual masking threshold */
while ((t != LAST) && (t != STOP)) { /* for non-tonal components to find LTG */
dz = ltg[k].bark - ltg[power[t].map].bark; /* distance of bark value */
if (dz >= -3.0 && dz < 8.0) {
tmps = -1.525 - 0.175 * ltg[power[t].map].bark - 0.5 + power[t].x;
/* masking function for lower & upper slopes */
if (dz < -1)
vf = 17 * (dz + 1) - (0.4 * power[t].x + 6);
else if (dz < 0)
vf = (0.4 * power[t].x + 6) * dz;
else if (dz < 1)
vf = (-17 * dz);
else
vf = -(dz - 1) * (17 - 0.15 * power[t].x) - 17;
ltg[k].x = add_db (ltg[k].x, tmps + vf);
}
t = power[t].next;
}
if (bit_rate < 96)
ltg[k].x = add_db (ltg[k].hear, ltg[k].x);
else
ltg[k].x = add_db (ltg[k].hear - 12.0, ltg[k].x);
}
}
/****************************************************************
*
* This function finds the minimum masking threshold and
* return the value to the encoder.
*
****************************************************************/
void psycho_1_minimum_mask (g_thres * ltg, double ltmin[SBLIMIT], int sblimit)
{
double min;
int i, j;
j = 1;
for (i = 0; i < sblimit; i++)
if (j >= sub_size - 1) /* check subband limit, and */
ltmin[i] = ltg[sub_size - 1].hear; /* calculate the minimum masking */
else { /* level of LTMIN for each subband */
min = ltg[j].x;
while (ltg[j].line >> 4 == i && j < sub_size) {
if (min > ltg[j].x)
min = ltg[j].x;
j++;
}
ltmin[i] = min;
}
}
/*****************************************************************
*
* This procedure is called in musicin to pick out the
* smaller of the scalefactor or threshold.
*
*****************************************************************/
void psycho_1_smr (double ltmin[SBLIMIT], double spike[SBLIMIT], double scale[SBLIMIT],
int sblimit)
{
int i;
double max;
for (i = 0; i < sblimit; i++) { /* determine the signal */
max = 20 * log10 (scale[i] * 32768) - 10; /* level for each subband */
if (spike[i] > max)
max = spike[i]; /* for the maximum scale */
max -= ltmin[i]; /* factors */
ltmin[i] = max;
}
}
void psycho_1_dump(mask power[HAN_SIZE], int *tone, int *noise) {
int t;
fprintf(stdout,"1 Ton: ");
t=*tone;
while (t!=LAST && t!=STOP) {
fprintf(stdout,"[%i] %3.0f ",t, power[t].x);
t = power[t].next;
}
fprintf(stdout,"\n");
fprintf(stdout,"1 Nos: ");
t=*noise;
while (t!=LAST && t!=STOP) {
fprintf(stdout,"[%i] %3.0f ",t, power[t].x);
t = power[t].next;
}
fprintf(stdout,"\n");
}
|