summaryrefslogtreecommitdiffstats
path: root/libSBRenc/src/psenc_hybrid.cpp
blob: a3146780c450cfa53e16e64a0ba7556becf1c851 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
/*****************************  MPEG Audio Encoder  ***************************

                     (C) Copyright Fraunhofer IIS (2004-2005)
                               All Rights Reserved

    Please be advised that this software and/or program delivery is
    Confidential Information of Fraunhofer and subject to and covered by the

    Fraunhofer IIS Software Evaluation Agreement
    between Google Inc. and  Fraunhofer
    effective and in full force since March 1, 2012.

    You may use this software and/or program only under the terms and
    conditions described in the above mentioned Fraunhofer IIS Software
    Evaluation Agreement. Any other and/or further use requires a separate agreement.


   $Id$
   Initial author:       M. Neuendorf, M. Multrus
   contents/description: hybrid analysis filter bank

   This software and/or program is protected by copyright law and international
   treaties. Any reproduction or distribution of this software and/or program,
   or any portion of it, may result in severe civil and criminal penalties, and
   will be prosecuted to the maximum extent possible under law.

******************************************************************************/

#include "psenc_hybrid.h"


/* Includes ******************************************************************/

#include "psenc_hybrid.h"
#include "sbr_ram.h"

#include "fft.h"

#include "genericStds.h"

/* Defines *******************************************************************/

#define HYBRID_SCALE                    4

/*//#define FAST_FILTER2
#define FAST_FILTER4
#define FAST_FILTER8
#define FAST_FILTER12
*/
#define HYBRID_INVERSE_ORDER            ( 0x0F000000 )
#define HYBRID_INVERSE_MASK             ( ~HYBRID_INVERSE_ORDER )

//#define REAL                            ( 0 )
//#define CPLX                            ( 1 )

#define cos0Pi   FL2FXCONST_DBL( 1.f)
#define sin0Pi   FL2FXCONST_DBL( 0.f)
#define cos1Pi   FL2FXCONST_DBL(-1.f)
#define sin1Pi   FL2FXCONST_DBL( 0.f)
#define cos1Pi_2 FL2FXCONST_DBL( 0.f)
#define sin1Pi_2 FL2FXCONST_DBL( 1.f)
#define cos1Pi_3 FL2FXCONST_DBL( 0.5f)
#define sin1Pi_3 FL2FXCONST_DBL( 0.86602540378444f)

#define cos0Pi_4  cos0Pi
#define cos1Pi_4  FL2FXCONST_DBL(0.70710678118655f)
#define cos2Pi_4  cos1Pi_2
#define cos3Pi_4  (-cos1Pi_4)
#define cos4Pi_4  (-cos0Pi_4)
#define cos5Pi_4  cos3Pi_4
#define cos6Pi_4  cos2Pi_4

#define sin0Pi_4  sin0Pi
#define sin1Pi_4  FL2FXCONST_DBL(0.70710678118655f)
#define sin2Pi_4  sin1Pi_2
#define sin3Pi_4  sin1Pi_4
#define sin4Pi_4  sin0Pi_4
#define sin5Pi_4  (-sin3Pi_4)
#define sin6Pi_4  (-sin2Pi_4)

#define cos0Pi_8  cos0Pi
#define cos1Pi_8  FL2FXCONST_DBL(0.92387953251129f)
#define cos2Pi_8  cos1Pi_4
#define cos3Pi_8  FL2FXCONST_DBL(0.38268343236509f)
#define cos4Pi_8  cos2Pi_4
#define cos5Pi_8  (-cos3Pi_8)
#define cos6Pi_8  (-cos2Pi_8)

#define sin0Pi_8 sin0Pi
#define sin1Pi_8 cos3Pi_8
#define sin2Pi_8 sin1Pi_4
#define sin3Pi_8 cos1Pi_8
#define sin4Pi_8 sin2Pi_4
#define sin5Pi_8 sin3Pi_8
#define sin6Pi_8 sin1Pi_4

#define cos0Pi_12 cos0Pi
#define cos1Pi_12 FL2FXCONST_DBL(0.96592582628906f)
#define cos2Pi_12 FL2FXCONST_DBL(0.86602540378444f)
#define cos3Pi_12 cos1Pi_4
#define cos4Pi_12 cos1Pi_3
#define cos5Pi_12 FL2FXCONST_DBL(0.25881904510252f)
#define cos6Pi_12 cos1Pi_2

#define sin0Pi_12 sin0Pi
#define sin1Pi_12 cos5Pi_12
#define sin2Pi_12 cos4Pi_12
#define sin3Pi_12 sin1Pi_4
#define sin4Pi_12 sin1Pi_3
#define sin5Pi_12 cos1Pi_12
#define sin6Pi_12 sin1Pi_2

#define FFT_IDX_R(a)  (2*a)
#define FFT_IDX_I(a)  (2*a+1)


/* Constants *****************************************************************/

/* static const UINT noQmfBandsInHybrid34 = 5; */

static const INT aHybridResolution10[] = { HYBRID_6_CPLX,
                                           HYBRID_2_REAL | HYBRID_INVERSE_ORDER,
                                           HYBRID_2_REAL };

static const INT aHybridResolution20[] = { HYBRID_6_CPLX,
                                           HYBRID_2_REAL | HYBRID_INVERSE_ORDER,
                                           HYBRID_2_REAL };

/*static const INT aHybridResolution34[] = { HYBRID_12_CPLX,
                                           HYBRID_8_CPLX,
                                           HYBRID_4_CPLX,
                                           HYBRID_4_CPLX,
                                           HYBRID_4_CPLX };*/

static const FIXP_DBL p8_13_20[HYBRID_FILTER_LENGTH] =
{
  FL2FXCONST_DBL(0.00746082949812f),  FL2FXCONST_DBL(0.02270420949825f),  FL2FXCONST_DBL(0.04546865930473f),  FL2FXCONST_DBL(0.07266113929591f),
  FL2FXCONST_DBL(0.09885108575264f),  FL2FXCONST_DBL(0.11793710567217f),  FL2FXCONST_DBL(0.125f           ),  FL2FXCONST_DBL(0.11793710567217f),
  FL2FXCONST_DBL(0.09885108575264f),  FL2FXCONST_DBL(0.07266113929591f),  FL2FXCONST_DBL(0.04546865930473f),  FL2FXCONST_DBL(0.02270420949825f),
  FL2FXCONST_DBL(0.00746082949812f)
};

static const FIXP_DBL p2_13_20[HYBRID_FILTER_LENGTH] =
{
  FL2FXCONST_DBL(0.0f), FL2FXCONST_DBL( 0.01899487526049f),  FL2FXCONST_DBL(0.0f), FL2FXCONST_DBL(-0.07293139167538f),
  FL2FXCONST_DBL(0.0f), FL2FXCONST_DBL( 0.30596630545168f),  FL2FXCONST_DBL(0.5f), FL2FXCONST_DBL( 0.30596630545168f),
  FL2FXCONST_DBL(0.0f), FL2FXCONST_DBL(-0.07293139167538f),  FL2FXCONST_DBL(0.0f), FL2FXCONST_DBL( 0.01899487526049f),
  FL2FXCONST_DBL(0.0f)
};


/*static const float p12_13_34[HYBRID_FILTER_LENGTH] =
{
  0.04081179924692,  0.03812810994926,  0.05144908135699,  0.06399831151592,
  0.07428313801106,  0.08100347892914,  0.08333333333333,  0.08100347892914,
  0.07428313801106,  0.06399831151592,  0.05144908135699,  0.03812810994926,
  0.04081179924692
};

static const float p8_13_34[HYBRID_FILTER_LENGTH] =
{
  0.01565675600122,  0.03752716391991,  0.05417891378782,  0.08417044116767,
  0.10307344158036,  0.12222452249753,  0.12500000000000,  0.12222452249753,
  0.10307344158036,  0.08417044116767,  0.05417891378782,  0.03752716391991,
  0.01565675600122
};

static const float p4_13_34[HYBRID_FILTER_LENGTH] =
{
 -0.05908211155639, -0.04871498374946,  0.0,               0.07778723915851,
  0.16486303567403,  0.23279856662996,  0.25,              0.23279856662996,
  0.16486303567403,  0.07778723915851,  0.0,              -0.04871498374946,
 -0.05908211155639
};*/


/* Function / Class Implementation *******************************************/



/*****************************************************************************/
/* **** FILTERBANK CONFIG **** */

HANDLE_ERROR_INFO FDKsbrEnc_CreateHybridConfig(HANDLE_PS_HYBRID_CONFIG *phHybConfig,
                                               PS_BANDS mode)
{
  HANDLE_ERROR_INFO error = noError;
  HANDLE_PS_HYBRID_CONFIG h = NULL;
  UINT k = 0;

  if (error == noError) {
    h = *phHybConfig; /* Simplify your life */
    h->mode = mode;

    switch (mode) {
    case PS_BANDS_MID:
      h->noQmfBandsInHybrid = NO_QMF_BANDS_HYBRID_20;
      for (k=0; k<h->noQmfBandsInHybrid; k++) {
        h->aHybridResolution[k] = aHybridResolution20[k];
      }
      break;

    case PS_BANDS_FINE:
      /*h->noQmfBandsInHybrid = noQmfBandsInHybrid34;
      for (k=0; k<h->noQmfBandsInHybrid; k++) {
        h->aHybridResolution[k] = aHybridResolution34[k];
      }*/
      FDK_ASSERT(0); /* we don't support! */
      break;

    case PS_BANDS_COARSE:
      h->noQmfBandsInHybrid = NO_QMF_BANDS_HYBRID_10;
      for (k=0; k<h->noQmfBandsInHybrid; k++) {
        h->aHybridResolution[k] = aHybridResolution10[k];
      }
      break;

    default:
      error = ERROR(CDI, "Invalid hybrid filter bank configuration.");
      break;
    }
  }

  return error;
}

/*****************************************************************************/
/* **** FILTERBANK DATA **** */

HANDLE_ERROR_INFO FDKsbrEnc_CreateHybridData(HANDLE_PS_HYBRID_DATA *phHybData,
                                   INT ch)
{
  HANDLE_ERROR_INFO error = noError;
  int k;

  HANDLE_PS_HYBRID_DATA hHybData = GetRam_HybData(ch);
  if (hHybData==NULL) {
    error = 1;
    goto bail;
  }

  FDKmemclear(hHybData, sizeof(PS_HYBRID_DATA));

  hHybData->rHybData[0] = GetRam_PsRhyb(ch);
  hHybData->iHybData[0] = GetRam_PsIhyb(ch);
  if ( (hHybData->rHybData[0]==NULL) || (hHybData->iHybData[0]==NULL) ) {
    error = 1;
    goto bail;
  }



  for (k=1; k<(HYBRID_FRAMESIZE+HYBRID_WRITEOFFSET); k++) {
    hHybData->rHybData[k] = hHybData->rHybData[0] + (k*HYBRID_NUM_BANDS);
    hHybData->iHybData[k] = hHybData->iHybData[0] + (k*HYBRID_NUM_BANDS);
  }

bail:
  *phHybData = hHybData;
  return error;
}


HANDLE_ERROR_INFO FDKsbrEnc_InitHybridData(HANDLE_PS_HYBRID_DATA hHybData,
                                   HANDLE_PS_HYBRID_CONFIG  hHybConfig,
                                   INT frameSize)
{
  HANDLE_ERROR_INFO error = noError;
  INT nHybridBands = 0;
  INT k = 0;
  INT noBands = 0;
  const INT *hybridRes = NULL;

  if (hHybConfig != NULL) {
    noBands = hHybConfig->noQmfBandsInHybrid;
    hybridRes = hHybConfig->aHybridResolution;
  }

  for (k=0; k<noBands; k++) {
    nHybridBands += (hybridRes[k] & HYBRID_INVERSE_MASK);
  }
  FDK_ASSERT (HYBRID_NUM_BANDS>=nHybridBands);

  hHybData->hybDataReadOffset = HYBRID_DATA_READ_OFFSET;
  hHybData->hybDataWriteOffset = HYBRID_WRITEOFFSET;

  for (k=0; k<(HYBRID_FRAMESIZE+HYBRID_WRITEOFFSET); k++) {
    FDKmemclear(hHybData->rHybData[k], sizeof(FIXP_QMF)*HYBRID_NUM_BANDS);
    FDKmemclear(hHybData->iHybData[k], sizeof(FIXP_QMF)*HYBRID_NUM_BANDS);
  }

  hHybData->frameSize       = frameSize;
  hHybData->nHybridBands    = nHybridBands;
  hHybData->nHybridQmfBands = noBands;

  /* store hybrid resoltion in hybrid data handle */
  FDK_ASSERT (HYBRID_MAX_QMF_BANDS>=hHybData->nHybridQmfBands);
  for(k = 0; k<hHybData->nHybridQmfBands; k++){
    hHybData->nHybridResolution[k] = (hybridRes[k] & HYBRID_INVERSE_MASK);
  }

  return error;
}

HANDLE_ERROR_INFO FDKsbrEnc_DestroyHybridData(HANDLE_PS_HYBRID_DATA* phHybData)
{
  HANDLE_PS_HYBRID_DATA hHybData = *phHybData;

  if (hHybData!=NULL) {
    FreeRam_PsRhyb(&hHybData->rHybData[0]);
    FreeRam_PsIhyb(&hHybData->iHybData[0]);
    FreeRam_HybData(phHybData);
  }

  return noError;
}

/*** Access functions ***/

/* return hybrid band resolution of qmf band 'qmfBand' */
INT FDKsbrEnc_GetHybridResolution(HANDLE_PS_HYBRID_DATA h, INT qmfBand){

  INT nHybridResolution = 0;

  if(h->nHybridResolution){
    nHybridResolution = h->nHybridResolution[qmfBand];
  }

  return nHybridResolution;
}

/*****************************************************************************/
/* **** FILTERBANK **** */

/*
   2 channel filter
   Filter Coefs:
   0.0,
   0.01899487526049,
   0.0,
   -0.07293139167538,
   0.0,
   0.30596630545168,
   0.5,
   0.30596630545168,
   0.0,
   -0.07293139167538,
   0.0,
   0.01899487526049,
   0.0


   Filter design:
   h[q,n] = g[n] * cos(2pi/2 * q * (n-6) );  n = 0..12,  q = 0,1;

   ->  h[0,n] = g[n] * 1;
   ->  h[1,n] = g[n] * pow(-1,n);

*/

static void dualChannelFiltering(const FIXP_QMF *RESTRICT pQmfReal,
                                 const FIXP_QMF *RESTRICT pQmfImag,
                                 FIXP_QMF **RESTRICT mHybridReal,
                                 FIXP_QMF **RESTRICT mHybridImag,
                                 INT nSamples)
{
  INT i;

  for(i = 0; i < nSamples; i++) {
    FIXP_DBL  r1, r3, r5, r6;
    FIXP_DBL  i1, i3, i5, i6;

    /* symmetric filter coefficients
       scaleValue same as used in eightChannelFiltering (HYBRID_SCALE = 4)
    */
    r1 = fMultDiv2(p2_13_20[1], (FIXP_QMF)((pQmfReal[1+i]>>1) + (pQmfReal[11+i]>>1)) ) >> 2;
    r3 = fMultDiv2(p2_13_20[3], (FIXP_QMF)((pQmfReal[3+i]>>1) + (pQmfReal[ 9+i]>>1)) ) >> 2;
    r5 = fMultDiv2(p2_13_20[5], (FIXP_QMF)((pQmfReal[5+i]>>1) + (pQmfReal[ 7+i]>>1)) ) >> 2;
    r6 = fMultDiv2(p2_13_20[6], (FIXP_QMF) (pQmfReal[6+i]>>1) ) >> 2;

    i1 = fMultDiv2(p2_13_20[1], (FIXP_QMF)((pQmfImag[1+i]>>1) + (pQmfImag[11+i]>>1)) ) >> 2;
    i3 = fMultDiv2(p2_13_20[3], (FIXP_QMF)((pQmfImag[3+i]>>1) + (pQmfImag[ 9+i]>>1)) ) >> 2;
    i5 = fMultDiv2(p2_13_20[5], (FIXP_QMF)((pQmfImag[5+i]>>1) + (pQmfImag[ 7+i]>>1)) ) >> 2;
    i6 = fMultDiv2(p2_13_20[6], (FIXP_QMF) (pQmfImag[6+i]>>1) ) >> 2;

    mHybridReal[i][0] = FX_DBL2FX_QMF(r1 + r3 + r5 + r6);
    mHybridImag[i][0] = FX_DBL2FX_QMF(i1 + i3 + i5 + i6);

    mHybridReal[i][1] = FX_DBL2FX_QMF(- r1 - r3 - r5 + r6);
    mHybridImag[i][1] = FX_DBL2FX_QMF(- i1 - i3 - i5 + i6);
  }
}

/*
   8 channel filter

   Implementation using a FFT of length 8

   prototype filter coefficients:
   0.00746082949812   0.02270420949825   0.04546865930473   0.07266113929591   0.09885108575264   0.11793710567217
   0.125
   0.11793710567217   0.09885108575264   0.07266113929591   0.04546865930473   0.02270420949825   0.00746082949812

   Filter design:
   N = 13; Q = 8;
   h[q,n]       = g[n] * exp(j * 2 * pi / Q * (q + .5) * (n - 6));  n = 0..(N-1),  q = 0..(Q-1);

   Time Signal:   x[t];
   Filter Bank Output
   y[q,t] = conv(x[t],h[q,t]) = conv(h[q,t],x[t]) = sum(x[k] * h[q, t - k] ) = sum(h[q, k] * x[t - k] ); k = 0..(N-1);

   y[q,t] =   x[t - 12]*h[q, 12]  +  x[t - 11]*h[q, 11]  +  x[t - 10]*h[q, 10]  +  x[t -  9]*h[q,  9]
           +  x[t -  8]*h[q,  8]  +  x[t -  7]*h[q,  7]
           +  x[t -  6]*h[q,  6]
           +  x[t -  5]*h[q,  5]  +  x[t -  4]*h[q,  4]
           +  x[t -  3]*h[q,  3]  +  x[t -  2]*h[q,  2]  +  x[t -  1]*h[q,  1]  +  x[t -  0]*h[q,  0];

   h'[q, n] = h[q,(N-1)-n] = g[n] * exp(j * 2 * pi / Q * (q + .5) * (6 - n));  n = 0..(N-1),  q = 0..(Q-1);

   y[q,t] =   x[t - 12]*h'[q,  0]  +  x[t - 11]*h'[q,  1]  +  x[t - 10]*h'[q,  2]  +  x[t -  9]*h'[q,  3]
           +  x[t -  8]*h'[q,  4]  +  x[t -  7]*h'[q,  5]
           +  x[t -  6]*h'[q,  6]
           +  x[t -  5]*h'[q,  7]  +  x[t -  4]*h'[q,  8]
           +  x[t -  3]*h'[q,  9]  +  x[t -  2]*h'[q, 10]  +  x[t -  1]*h'[q, 11]  +  x[t -  0]*h'[q, 12];

   Try to split off FFT Modulation Term:
   FFT(x[t], q) = sum(x[t+k]*exp(-j*2*pi/N *q * k))
                                           c                                           m
   Step 1:  h'[q,n] = g[n] * ( exp(j * 2 * pi / 8 * .5 * (6 - n)) ) * ( exp (j * 2 * pi / 8 * q * (6 - n)) );

    h'[q,n] = g[n] *c[n] * m[q,n]; (see above)
    c[n]    = exp( j * 2 * pi / 8 * .5 * (6 - n) );
    m[q,n]  = exp( j * 2 * pi / 8 *  q * (6 - n) );

    y[q,t] = x[t -  0]*g[0]*c[0]*m[q,0]  +  x[t -  1]*g[1]*c[ 1]*m[q, 1]  + ...
             ...                         +  x[t - 12]*g[2]*c[12]*m[q,12];

                                                                              |
    n                   m                            *exp(-j*2*pi)            |   n'                   fft
-------------------------------------------------------------------------------------------------------------------------
    0       exp( j * 2 * pi / 8 * q * 6) ->  exp(-j * 2 * pi / 8 * q * 2)     |   2         exp(-j * 2 * pi / 8 * q * 0)
    1       exp( j * 2 * pi / 8 * q * 5) ->  exp(-j * 2 * pi / 8 * q * 3)     |   3         exp(-j * 2 * pi / 8 * q * 1)
    2       exp( j * 2 * pi / 8 * q * 4) ->  exp(-j * 2 * pi / 8 * q * 4)     |   4         exp(-j * 2 * pi / 8 * q * 2)
    3       exp( j * 2 * pi / 8 * q * 3) ->  exp(-j * 2 * pi / 8 * q * 5)     |   5         exp(-j * 2 * pi / 8 * q * 3)
    4       exp( j * 2 * pi / 8 * q * 2) ->  exp(-j * 2 * pi / 8 * q * 6)     |   6         exp(-j * 2 * pi / 8 * q * 4)
    5       exp( j * 2 * pi / 8 * q * 1) ->  exp(-j * 2 * pi / 8 * q * 7)     |   7         exp(-j * 2 * pi / 8 * q * 5)
    6       exp( j * 2 * pi / 8 * q * 0)                                      |   0         exp(-j * 2 * pi / 8 * q * 6)
    7       exp(-j * 2 * pi / 8 * q * 1)                                      |   1         exp(-j * 2 * pi / 8 * q * 7)
    8       exp(-j * 2 * pi / 8 * q * 2)                                      |   2
    9       exp(-j * 2 * pi / 8 * q * 3)                                      |   3
    10      exp(-j * 2 * pi / 8 * q * 4)                                      |   4
    11      exp(-j * 2 * pi / 8 * q * 5)                                      |   5
    12      exp(-j * 2 * pi / 8 * q * 6)                                      |   6


    now use fft modulation coefficients
    m[6]  =       = fft[0]
    m[7]  =       = fft[1]
    m[8]  = m[ 0] = fft[2]
    m[9]  = m[ 1] = fft[3]
    m[10] = m[ 2] = fft[4]
    m[11] = m[ 3] = fft[5]
    m[12] = m[ 4] = fft[6]
            m[ 5] = fft[7]

    y[q,t] = (                       x[t- 6]*g[ 6]*c[ 6] ) * fft[q,0]  +
             (                       x[t- 7]*g[ 7]*c[ 7] ) * fft[q,1]  +
             ( x[t- 0]*g[ 0]*c[ 0] + x[t- 8]*g[ 8]*c[ 8] ) * fft[q,2]  +
             ( x[t- 1]*g[ 1]*c[ 1] + x[t- 9]*g[ 9]*c[ 9] ) * fft[q,3]  +
             ( x[t- 2]*g[ 2]*c[ 2] + x[t-10]*g[10]*c[10] ) * fft[q,4]  +
             ( x[t- 3]*g[ 3]*c[ 3] + x[t-11]*g[11]*c[11] ) * fft[q,5]  +
             ( x[t- 4]*g[ 4]*c[ 4] + x[t-12]*g[12]*c[12] ) * fft[q,6]  +
             ( x[t- 5]*g[ 5]*c[ 5]                       ) * fft[q,7];

    pre twiddle factors c[n] = exp(j * 2 * pi / 8 * .5 * (6 - n));
    n                c]           |  n                c[n]         |  n                c[n]
---------------------------------------------------------------------------------------------------
    0       exp( j * 6 * pi / 8)  |  1       exp( j * 5 * pi / 8)  |  2       exp( j * 4 * pi / 8)
    3       exp( j * 3 * pi / 8)  |  4       exp( j * 2 * pi / 8)  |  5       exp( j * 1 * pi / 8)
    6       exp( j * 0 * pi / 8)  |  7       exp(-j * 1 * pi / 8)  |  8       exp(-j * 2 * pi / 8)
    9       exp(-j * 3 * pi / 8)  | 10       exp(-j * 4 * pi / 8)  | 11       exp(-j * 5 * pi / 8)
   12       exp(-j * 6 * pi / 8)  |                                |

*/

static const FIXP_DBL  cr[13] =
{  cos6Pi_8, cos5Pi_8, cos4Pi_8,
   cos3Pi_8, cos2Pi_8, cos1Pi_8,
   cos0Pi_8,
   cos1Pi_8, cos2Pi_8, cos3Pi_8,
   cos4Pi_8, cos5Pi_8, cos6Pi_8
};

static const FIXP_DBL  ci[13] =
{
  sin6Pi_8, sin5Pi_8, sin4Pi_8,
  sin3Pi_8, sin2Pi_8, sin1Pi_8,
  sin0Pi_8,
  -sin1Pi_8,  -sin2Pi_8,  -sin3Pi_8,
  -sin4Pi_8,  -sin5Pi_8,  -sin6Pi_8
};


static void eightChannelFiltering(const FIXP_QMF *pQmfReal,
                                  const FIXP_QMF *pQmfImag,
                                  FIXP_DBL *fft,
                                  FIXP_QMF **mHybridReal,
                                  FIXP_QMF **mHybridImag,
                                  INT nSamples,
                                  const FIXP_DBL *p)
{
  INT i, bin;
  for(i = 0; i < nSamples; i++) {
    /* pre twiddeling
       scaling 4 =  2 (fMultDiv2) + 2 (dit_fft) scaling (HYBRID_SCALE = 4)
    */
    fft[FFT_IDX_R(0)] = fMultDiv2(p[6],  fMultSubDiv2(fMultDiv2(cr[6], pQmfReal[6+i]), ci[6], pQmfImag[6+i]));
    fft[FFT_IDX_I(0)] = fMultDiv2(p[6],  fMultAddDiv2(fMultDiv2(ci[6], pQmfReal[6+i]), cr[6], pQmfImag[6+i]));

    fft[FFT_IDX_R(1)] = fMultDiv2(p[7],  fMultSubDiv2(fMultDiv2(cr[7], pQmfReal[7+i]), ci[7], pQmfImag[7+i]));
    fft[FFT_IDX_I(1)] = fMultDiv2(p[7],  fMultAddDiv2(fMultDiv2(ci[7], pQmfReal[7+i]), cr[7], pQmfImag[7+i]));

    fft[FFT_IDX_R(2)] = ( fMultDiv2(p[ 0], fMultSubDiv2(fMultDiv2(cr[0], pQmfReal[ 0+i]), ci[0], pQmfImag[ 0+i]))+
                          fMultDiv2(p[ 8], fMultSubDiv2(fMultDiv2(cr[8], pQmfReal[ 8+i]), ci[8], pQmfImag[ 8+i])) );
    fft[FFT_IDX_I(2)] = ( fMultDiv2(p[ 0], fMultAddDiv2(fMultDiv2(ci[0], pQmfReal[ 0+i]), cr[0], pQmfImag[ 0+i]))+
                          fMultDiv2(p[ 8], fMultAddDiv2(fMultDiv2(ci[8], pQmfReal[ 8+i]), cr[8], pQmfImag[ 8+i])) );

    fft[FFT_IDX_R(3)] = ( fMultDiv2(p[ 1], fMultSubDiv2(fMultDiv2(cr[1], pQmfReal[ 1+i]), ci[1], pQmfImag[ 1+i]))+
                          fMultDiv2(p[ 9], fMultSubDiv2(fMultDiv2(cr[9], pQmfReal[ 9+i]), ci[9], pQmfImag[ 9+i])) );
    fft[FFT_IDX_I(3)] = ( fMultDiv2(p[ 1], fMultAddDiv2(fMultDiv2(ci[1], pQmfReal[ 1+i]), cr[1], pQmfImag[ 1+i]))+
                          fMultDiv2(p[ 9], fMultAddDiv2(fMultDiv2(ci[9], pQmfReal[ 9+i]), cr[9], pQmfImag[ 9+i])) );

    fft[FFT_IDX_R(4)] = ( fMultDiv2(p[ 2], fMultSubDiv2( fMultDiv2(cr[2], pQmfReal[ 2+i]), ci[2], pQmfImag[ 2+i]))+
                          fMultDiv2(p[10], fMultSubDiv2(fMultDiv2(cr[10], pQmfReal[10+i]), ci[10], pQmfImag[10+i])) );
    fft[FFT_IDX_I(4)] = ( fMultDiv2(p[ 2], fMultAddDiv2( fMultDiv2(ci[2], pQmfReal[ 2+i]), cr[2], pQmfImag[ 2+i]))+
                          fMultDiv2(p[10], fMultAddDiv2(fMultDiv2(ci[10], pQmfReal[10+i]), cr[10], pQmfImag[10+i])) );

    fft[FFT_IDX_R(5)] = ( fMultDiv2(p[ 3], fMultSubDiv2( fMultDiv2(cr[3], pQmfReal[ 3+i]), ci[3], pQmfImag[ 3+i]))+
                          fMultDiv2(p[11], fMultSubDiv2(fMultDiv2(cr[11], pQmfReal[11+i]), ci[11], pQmfImag[11+i])) );
    fft[FFT_IDX_I(5)] = ( fMultDiv2(p[ 3], fMultAddDiv2( fMultDiv2(ci[3], pQmfReal[ 3+i]), cr[3], pQmfImag[ 3+i]))+
                          fMultDiv2(p[11], fMultAddDiv2(fMultDiv2(ci[11], pQmfReal[11+i]), cr[11], pQmfImag[11+i])) );

    fft[FFT_IDX_R(6)] = ( fMultDiv2(p[ 4], fMultSubDiv2( fMultDiv2(cr[4], pQmfReal[ 4+i]), ci[4], pQmfImag[ 4+i]))+
                          fMultDiv2(p[12], fMultSubDiv2(fMultDiv2(cr[12], pQmfReal[12+i]), ci[12], pQmfImag[12+i])) );
    fft[FFT_IDX_I(6)] = ( fMultDiv2(p[ 4], fMultAddDiv2( fMultDiv2(ci[4], pQmfReal[ 4+i]), cr[4], pQmfImag[ 4+i]))+
                          fMultDiv2(p[12], fMultAddDiv2(fMultDiv2(ci[12], pQmfReal[12+i]), cr[12], pQmfImag[12+i])) );

    fft[FFT_IDX_R(7)] = fMultDiv2(p[5], fMultSubDiv2(fMultDiv2(cr[5], pQmfReal[5+i]), ci[5], pQmfImag[5+i]));
    fft[FFT_IDX_I(7)] = fMultDiv2(p[5], fMultAddDiv2(fMultDiv2(ci[5], pQmfReal[5+i]), cr[5], pQmfImag[5+i]));

    /* fft modulation */
    fft_8(fft);

    /* resort fft data INTo output array*/
    for(bin=0; bin<8;bin++ ) {
      mHybridReal[i][bin] = FX_DBL2FX_QMF(fft[FFT_IDX_R(bin)]);
      mHybridImag[i][bin] = FX_DBL2FX_QMF(fft[FFT_IDX_I(bin)]);
    }
  }
}

/**************************************************************************//**
HybridAnalysis
******************************************************************************/

HANDLE_ERROR_INFO
HybridAnalysis ( HANDLE_PS_HYBRID       hHybrid,       /*!< Handle to HYBRID struct. */
                 FIXP_QMF *const *const mQmfReal,      /*!< The real part of the QMF-matrix.  */
                 FIXP_QMF *const *const mQmfImag,      /*!< The imaginary part of the QMF-matrix. */
                 SCHAR                  sf_fixpQmf,    /*!< Qmf scale factor */
                 FIXP_QMF             **mHybridReal,   /*!< The real part of the hybrid-matrix.  */
                 FIXP_QMF             **mHybridImag,   /*!< The imaginary part of the hybrid-matrix.  */
                 SCHAR                 *sf_fixpHybrid) /*!< Hybrid scale factor */
{
  HANDLE_ERROR_INFO error = noError;
  INT         n, band;
  INT         hybridRes;
  INT         chOffset = 0;
  /* INT         usedStereoBands   = hHybrid->mode;  */   /*!< indicates which 8 band filter to use */
  INT         frameSize         = hHybrid->frameSize;
  INT         hybridFilterDelay = hHybrid->hybridFilterDelay;

  for(band = 0; band < hHybrid->nQmfBands; band++) { /* loop all qmf bands */

    if(error == noError){
      hybridRes = hHybrid->pResolution[band];

      /* Create working buffer. */
      /* Copy stored samples to working buffer. */
      FDKmemcpy(hHybrid->pWorkReal, hHybrid->mQmfBufferReal[band],
                 hHybrid->qmfBufferMove * sizeof(FIXP_QMF));
      FDKmemcpy(hHybrid->pWorkImag, hHybrid->mQmfBufferImag[band],
                 hHybrid->qmfBufferMove * sizeof(FIXP_QMF));

      /* Append new samples to working buffer. */
      for(n = 0; n < frameSize; n++) {
        hHybrid->pWorkReal [hHybrid->qmfBufferMove + n] = mQmfReal [n + hybridFilterDelay] [band];
        hHybrid->pWorkImag [hHybrid->qmfBufferMove + n] = mQmfImag [n + hybridFilterDelay] [band];
      }

      /* Store samples for next frame. */
      FDKmemcpy(hHybrid->mQmfBufferReal[band], hHybrid->pWorkReal + frameSize,
                 hHybrid->qmfBufferMove * sizeof(FIXP_QMF));
      FDKmemcpy(hHybrid->mQmfBufferImag[band], hHybrid->pWorkImag + frameSize,
                 hHybrid->qmfBufferMove * sizeof(FIXP_QMF));


      switch(hybridRes) {
      case HYBRID_2_REAL:
        dualChannelFiltering( hHybrid->pWorkReal,
                              hHybrid->pWorkImag,
                              hHybrid->mTempReal,
                              hHybrid->mTempImag,
                              frameSize);

        /* copy data to output buffer */
        for(n = 0; n < frameSize; n++) {
          FDKmemcpy(&mHybridReal[n][chOffset], hHybrid->mTempReal[n],
                     (INT)(hybridRes & HYBRID_INVERSE_MASK)*sizeof(FIXP_QMF));
          FDKmemcpy(&mHybridImag[n][chOffset], hHybrid->mTempImag[n],
                     (INT)(hybridRes & HYBRID_INVERSE_MASK)*sizeof(FIXP_QMF));
        }
        break;

      case HYBRID_2_REAL | HYBRID_INVERSE_ORDER:
        dualChannelFiltering( hHybrid->pWorkReal,
                              hHybrid->pWorkImag,
                              hHybrid->mTempReal,
                              hHybrid->mTempImag,
                              frameSize);

        /* copy and resort data */
        for ( n = 0; n < frameSize; n++ )
          {
            mHybridReal[n][chOffset + 0] = hHybrid->mTempReal[n][1] ;
            mHybridReal[n][chOffset + 1] = hHybrid->mTempReal[n][0] ;
            mHybridImag[n][chOffset + 0] = hHybrid->mTempImag[n][1] ;
            mHybridImag[n][chOffset + 1] = hHybrid->mTempImag[n][0] ;
          }
        break;

      case HYBRID_6_CPLX:
        eightChannelFiltering( hHybrid->pWorkReal,
                               hHybrid->pWorkImag,
                               hHybrid->fft,
                               hHybrid->mTempReal,
                               hHybrid->mTempImag,
                               frameSize,
                               /*(usedStereoBands==PS_BANDS_FINE)?p8_13_34:*/p8_13_20);

        /* do the shuffle */
        for ( n = 0; n < frameSize; n++ )
          {
            /* add data ... */
            hHybrid->mTempReal[n][2] += hHybrid->mTempReal[n][5];
            hHybrid->mTempImag[n][2] += hHybrid->mTempImag[n][5];
            hHybrid->mTempReal[n][3] += hHybrid->mTempReal[n][4];
            hHybrid->mTempImag[n][3] += hHybrid->mTempImag[n][4];

            /* shuffle and copy to output buffer */
            mHybridReal[n][chOffset + 0] = hHybrid->mTempReal[n][6] ;
            mHybridReal[n][chOffset + 1] = hHybrid->mTempReal[n][7] ;
            mHybridReal[n][chOffset + 2] = hHybrid->mTempReal[n][0] ;
            mHybridReal[n][chOffset + 3] = hHybrid->mTempReal[n][1] ;
            mHybridReal[n][chOffset + 4] = hHybrid->mTempReal[n][2] ;
            mHybridReal[n][chOffset + 5] = hHybrid->mTempReal[n][3] ;

            mHybridImag[n][chOffset + 0] = hHybrid->mTempImag[n][6] ;
            mHybridImag[n][chOffset + 1] = hHybrid->mTempImag[n][7] ;
            mHybridImag[n][chOffset + 2] = hHybrid->mTempImag[n][0] ;
            mHybridImag[n][chOffset + 3] = hHybrid->mTempImag[n][1] ;
            mHybridImag[n][chOffset + 4] = hHybrid->mTempImag[n][2] ;
            mHybridImag[n][chOffset + 5] = hHybrid->mTempImag[n][3] ;
          }
        break;

      case HYBRID_8_CPLX:
        eightChannelFiltering( hHybrid->pWorkReal,
                               hHybrid->pWorkImag,
                               hHybrid->fft,
                               hHybrid->mTempReal,
                               hHybrid->mTempImag,
                               frameSize,
                               /*(usedStereoBands==PS_BANDS_FINE)?p8_13_34:*/p8_13_20);

        /* copy data to output buffer */
        for(n = 0; n < frameSize; n++) {
          FDKmemcpy(&mHybridReal[n][chOffset], hHybrid->mTempReal[n],
                     (INT)(hybridRes & HYBRID_INVERSE_MASK)*sizeof(FIXP_QMF));
          FDKmemcpy(&mHybridImag[n][chOffset], hHybrid->mTempImag[n],
                     (INT)(hybridRes & HYBRID_INVERSE_MASK)*sizeof(FIXP_QMF));
        }
        break;

      default:
        error = ERROR(CDI, "Invalid filter bank configuration.");
        break;
      }
      /* prepare next run by incresing chOffset */
      chOffset += hybridRes & HYBRID_INVERSE_MASK;
    }
  }

  *sf_fixpHybrid = sf_fixpQmf + HYBRID_SCALE;

  return error;
}

/**************************************************************************//**
  FDKsbrEnc_CreateHybridFilterBank
******************************************************************************/
HANDLE_ERROR_INFO
FDKsbrEnc_CreateHybridFilterBank ( HANDLE_PS_HYBRID        *phHybrid,     /*!< Pointer to handle to HYBRID struct.  */
                                   INT                      ch)           /*!< Current channel */
{
  HANDLE_ERROR_INFO  error = noError;
  INT i;
  HANDLE_PS_HYBRID hs = GetRam_PsHybrid(ch); /* allocate memory */
  if (hs==NULL) {
    error = 1;
    goto bail;
  }

  hs->fft = GetRam_PsHybFFT();

  /* alloc working memory */
  hs->pWorkReal = GetRam_PsHybWkReal();
  hs->pWorkImag = GetRam_PsHybWkImag();

  if ( (hs->fft==NULL) || (hs->pWorkReal==NULL) || (hs->pWorkImag==NULL) ) {
    error = 1;
    goto bail;
  }

  /* Allocate buffers */
  for (i = 0; i < HYBRID_FRAMESIZE; i++) {
    hs->mTempReal[i] = GetRam_PsMtmpReal(i);
    hs->mTempImag[i] = GetRam_PsMtmpImag(i);
    if ( (hs->mTempReal[i]==NULL) || (hs->mTempImag[i]==NULL) ) {
      error = 1;
      goto bail;
    }
  }

bail:
  *phHybrid = hs;
  return error;
}

HANDLE_ERROR_INFO
FDKsbrEnc_InitHybridFilterBank ( HANDLE_PS_HYBRID         hs,           /*!< Handle to HYBRID struct.  */
                                 HANDLE_PS_HYBRID_CONFIG  hHybConfig,   /*!< Configuration hanlde for filter bank */
                                 INT                      frameSize)    /*!< Number of QMF slots */
{
  HANDLE_ERROR_INFO  error = noError;
  INT i;
  INT maxNoChannels = HYBRID_12_CPLX, noBands;
  PS_BANDS mode;
  const INT *RESTRICT pResolution;

  /* filter bank configuration */
  mode    = hHybConfig->mode;
  noBands = hHybConfig->noQmfBandsInHybrid;
  pResolution = hHybConfig->aHybridResolution;

  /* assign resolution, check for valid values */
  for (i = 0; i < noBands; i++) {
    if(error == noError){
      if( pResolution[i] != HYBRID_12_CPLX &&
          pResolution[i] != HYBRID_8_CPLX &&
          pResolution[i] != HYBRID_6_CPLX &&
          pResolution[i] != HYBRID_2_REAL &&
          pResolution[i] != (HYBRID_2_REAL | HYBRID_INVERSE_ORDER) &&
          pResolution[i] != HYBRID_4_CPLX ){
        error = ERROR(CDI, "Invalid filter bank resolution");
      }
    }
    hs->pResolution[i] = pResolution[i];
    if((pResolution[i] & HYBRID_INVERSE_MASK) > maxNoChannels){
      maxNoChannels = pResolution[i] & HYBRID_INVERSE_MASK;
    }
  }
  FDK_ASSERT (MAX_HYBRID_RES>=maxNoChannels); /* check size of mTempReal/Imag */

  /* assign parameters */
  hs->mode              = mode;
  hs->nQmfBands         = noBands;
  hs->frameSize         = frameSize;
  hs->frameSizeInit     = frameSize;
  hs->qmfBufferMove     = HYBRID_FILTER_LENGTH - 1;
  hs->hybridFilterDelay = HYBRID_FILTER_LENGTH/2;

  FDK_ASSERT (HYBRID_FRAMESIZE>=hs->frameSize);
  FDK_ASSERT (QMF_BUFFER_MOVE>=hs->qmfBufferMove);

  return error;
}


/**************************************************************************//**
   FDKsbrEnc_DeleteHybridFilterBank
******************************************************************************/

HANDLE_ERROR_INFO
FDKsbrEnc_DeleteHybridFilterBank ( HANDLE_PS_HYBRID* phHybrid ) /*!< Pointer to handle to HYBRID struct. */
{
  int i;
  HANDLE_PS_HYBRID hHybrid = *phHybrid;

  if (hHybrid!=NULL) {
    if (hHybrid->fft)
      FreeRam_PsHybFFT(&hHybrid->fft);
    if (hHybrid->pWorkReal)
      FreeRam_PsHybWkReal(&hHybrid->pWorkReal);
    if (hHybrid->pWorkImag)
      FreeRam_PsHybWkImag(&hHybrid->pWorkImag);

    for (i = 0; i < HYBRID_FRAMESIZE; i++) {
      if (hHybrid->mTempReal[i])
        FreeRam_PsMtmpReal(&hHybrid->mTempReal[i]);
      if (hHybrid->mTempImag[i])
      FreeRam_PsMtmpImag(&hHybrid->mTempImag[i]);
    }

    FreeRam_PsHybrid(phHybrid);
  }

  return noError;
}

/*** Access functions ***/
INT FDKsbrEnc_GetHybridFilterDelay(HANDLE_PS_HYBRID hHybrid){

  return hHybrid->hybridFilterDelay;
}