1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
|
/****************************************************************************
(C) Copyright Fraunhofer IIS (2004)
All Rights Reserved
Please be advised that this software and/or program delivery is
Confidential Information of Fraunhofer and subject to and covered by the
Fraunhofer IIS Software Evaluation Agreement
between Google Inc. and Fraunhofer
effective and in full force since March 1, 2012.
You may use this software and/or program only under the terms and
conditions described in the above mentioned Fraunhofer IIS Software
Evaluation Agreement. Any other and/or further use requires a separate agreement.
This software and/or program is protected by copyright law and international
treaties. Any reproduction or distribution of this software and/or program,
or any portion of it, may result in severe civil and criminal penalties, and
will be prosecuted to the maximum extent possible under law.
$Id$
*******************************************************************************/
#include "invf_est.h"
#include "sbr_misc.h"
#include "genericStds.h"
#define MAX_NUM_REGIONS 10
#define SCALE_FAC_QUO 512.0f
#define SCALE_FAC_NRG 256.0f
#ifndef min
#define min(a,b) ( a < b ? a:b)
#endif
#ifndef max
#define max(a,b) ( a > b ? a:b)
#endif
static const FIXP_DBL quantStepsSbr[4] = { 0x00400000, 0x02800000, 0x03800000, 0x04c00000 } ; /* table scaled with SCALE_FAC_QUO */
static const FIXP_DBL quantStepsOrig[4] = { 0x00000000, 0x00c00000, 0x01c00000, 0x02800000 } ; /* table scaled with SCALE_FAC_QUO */
static const FIXP_DBL nrgBorders[4] = { 0x0c800000, 0x0f000000, 0x11800000, 0x14000000 } ; /* table scaled with SCALE_FAC_NRG */
static const DETECTOR_PARAMETERS detectorParamsAAC = {
quantStepsSbr,
quantStepsOrig,
nrgBorders,
4, /* Number of borders SBR. */
4, /* Number of borders orig. */
4, /* Number of borders Nrg. */
{ /* Region space. */
{INVF_MID_LEVEL, INVF_LOW_LEVEL, INVF_OFF, INVF_OFF, INVF_OFF}, /* | */
{INVF_MID_LEVEL, INVF_LOW_LEVEL, INVF_OFF, INVF_OFF, INVF_OFF}, /* | */
{INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_LOW_LEVEL, INVF_OFF, INVF_OFF}, /* regionSbr */
{INVF_HIGH_LEVEL, INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_OFF, INVF_OFF}, /* | */
{INVF_HIGH_LEVEL, INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_OFF, INVF_OFF} /* | */
},/*------------------------ regionOrig ---------------------------------*/
{ /* Region space transient. */
{INVF_LOW_LEVEL, INVF_LOW_LEVEL, INVF_LOW_LEVEL, INVF_OFF, INVF_OFF}, /* | */
{INVF_LOW_LEVEL, INVF_LOW_LEVEL, INVF_LOW_LEVEL, INVF_OFF, INVF_OFF}, /* | */
{INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_MID_LEVEL, INVF_OFF, INVF_OFF}, /* regionSbr */
{INVF_HIGH_LEVEL, INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_OFF, INVF_OFF}, /* | */
{INVF_HIGH_LEVEL, INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_OFF, INVF_OFF} /* | */
},/*------------------------ regionOrig ---------------------------------*/
{-4, -3, -2, -1, 0} /* Reduction factor of the inverse filtering for low energies.*/
};
static const FIXP_DBL hysteresis = 0x00400000 ; /* Delta value for hysteresis. scaled with SCALE_FAC_QUO */
/*
* AAC+SBR PARAMETERS for Speech
*********************************/
static const DETECTOR_PARAMETERS detectorParamsAACSpeech = {
quantStepsSbr,
quantStepsOrig,
nrgBorders,
4, /* Number of borders SBR. */
4, /* Number of borders orig. */
4, /* Number of borders Nrg. */
{ /* Region space. */
{INVF_MID_LEVEL, INVF_MID_LEVEL, INVF_LOW_LEVEL, INVF_OFF, INVF_OFF}, /* | */
{INVF_MID_LEVEL, INVF_MID_LEVEL, INVF_LOW_LEVEL, INVF_OFF, INVF_OFF}, /* | */
{INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_MID_LEVEL, INVF_OFF, INVF_OFF}, /* regionSbr */
{INVF_HIGH_LEVEL, INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_OFF, INVF_OFF}, /* | */
{INVF_HIGH_LEVEL, INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_OFF, INVF_OFF} /* | */
},/*------------------------ regionOrig ---------------------------------*/
{ /* Region space transient. */
{INVF_MID_LEVEL, INVF_MID_LEVEL, INVF_LOW_LEVEL, INVF_OFF, INVF_OFF}, /* | */
{INVF_MID_LEVEL, INVF_MID_LEVEL, INVF_LOW_LEVEL, INVF_OFF, INVF_OFF}, /* | */
{INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_MID_LEVEL, INVF_OFF, INVF_OFF}, /* regionSbr */
{INVF_HIGH_LEVEL, INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_OFF, INVF_OFF}, /* | */
{INVF_HIGH_LEVEL, INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_OFF, INVF_OFF} /* | */
},/*------------------------ regionOrig ---------------------------------*/
{-4, -3, -2, -1, 0} /* Reduction factor of the inverse filtering for low energies.*/
};
/*
* Smoothing filters.
************************/
typedef const FIXP_DBL FIR_FILTER[5];
static const FIR_FILTER fir_0 = { 0x7fffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000 } ;
static const FIR_FILTER fir_1 = { 0x2aaaaa80, 0x555554ff, 0x00000000, 0x00000000, 0x00000000 } ;
static const FIR_FILTER fir_2 = { 0x10000000, 0x30000000, 0x40000000, 0x00000000, 0x00000000 } ;
static const FIR_FILTER fir_3 = { 0x077f80e8, 0x199999a0, 0x2bb3b240, 0x33333340, 0x00000000 } ;
static const FIR_FILTER fir_4 = { 0x04130598, 0x0ebdb000, 0x1becfa60, 0x2697a4c0, 0x2aaaaa80 } ;
static const FIR_FILTER *const fir_table[5] = {
&fir_0,
&fir_1,
&fir_2,
&fir_3,
&fir_4
};
/**************************************************************************/
/*!
\brief Calculates the values used for the detector.
\return none
*/
/**************************************************************************/
static void
calculateDetectorValues(FIXP_DBL **quotaMatrixOrig, /*!< Matrix holding the tonality values of the original. */
SCHAR *indexVector, /*!< Index vector to obtain the patched data. */
FIXP_DBL *nrgVector, /*!< Energy vector. */
DETECTOR_VALUES *detectorValues, /*!< pointer to DETECTOR_VALUES struct. */
INT startChannel, /*!< Start channel. */
INT stopChannel, /*!< Stop channel. */
INT startIndex, /*!< Start index. */
INT stopIndex, /*!< Stop index. */
INT numberOfStrongest /*!< The number of sorted tonal components to be considered. */
)
{
INT i,temp, j;
const FIXP_DBL* filter = *fir_table[INVF_SMOOTHING_LENGTH];
FIXP_DBL origQuotaMeanStrongest, sbrQuotaMeanStrongest;
FIXP_DBL origQuota, sbrQuota;
FIXP_DBL invIndex, invChannel, invTemp;
FIXP_DBL quotaVecOrig[64], quotaVecSbr[64];
FDKmemclear(quotaVecOrig,64*sizeof(FIXP_DBL));
FDKmemclear(quotaVecSbr,64*sizeof(FIXP_DBL));
invIndex = GetInvInt(stopIndex-startIndex);
invChannel = GetInvInt(stopChannel-startChannel);
/*
Calculate the mean value, over the current time segment, for the original, the HFR
and the difference, over all channels in the current frequency range.
NOTE: the averaging is done on the values quota/(1 - quota + RELAXATION).
*/
/* The original, the sbr signal and the total energy */
detectorValues->avgNrg = FL2FXCONST_DBL(0.0f);
for(j=startIndex; j<stopIndex; j++) {
for(i=startChannel; i<stopChannel; i++) {
quotaVecOrig[i] += fMult(quotaMatrixOrig[j][i], invIndex);
if(indexVector[i] != -1)
quotaVecSbr[i] += fMult(quotaMatrixOrig[j][indexVector[i]], invIndex);
}
detectorValues->avgNrg += fMult(nrgVector[j], invIndex);
}
/*
Calculate the mean value, over the current frequency range, for the original, the HFR
and the difference. Also calculate the same mean values for the three vectors, but only
includeing the x strongest copmponents.
*/
origQuota = FL2FXCONST_DBL(0.0f);
sbrQuota = FL2FXCONST_DBL(0.0f);
for(i=startChannel; i<stopChannel; i++) {
origQuota += fMultDiv2(quotaVecOrig[i], invChannel);
sbrQuota += fMultDiv2(quotaVecSbr[i], invChannel);
}
/*
Calculate the mean value for the x strongest components
*/
FDKsbrEnc_Shellsort_fract(quotaVecOrig+startChannel,stopChannel-startChannel);
FDKsbrEnc_Shellsort_fract(quotaVecSbr+startChannel,stopChannel-startChannel);
origQuotaMeanStrongest = FL2FXCONST_DBL(0.0f);
sbrQuotaMeanStrongest = FL2FXCONST_DBL(0.0f);
temp = min(stopChannel - startChannel, numberOfStrongest);
invTemp = GetInvInt(temp);
for(i=0; i<temp; i++) {
origQuotaMeanStrongest += fMultDiv2(quotaVecOrig[i + stopChannel - temp], invTemp);
sbrQuotaMeanStrongest += fMultDiv2(quotaVecSbr[i + stopChannel - temp], invTemp);
}
/*
The value for the strongest component
*/
detectorValues->origQuotaMax = quotaVecOrig[stopChannel - 1];
detectorValues->sbrQuotaMax = quotaVecSbr[stopChannel - 1];
/*
Buffer values
*/
FDKmemmove(detectorValues->origQuotaMean, detectorValues->origQuotaMean + 1, INVF_SMOOTHING_LENGTH*sizeof(FIXP_DBL));
FDKmemmove(detectorValues->sbrQuotaMean, detectorValues->sbrQuotaMean + 1, INVF_SMOOTHING_LENGTH*sizeof(FIXP_DBL));
FDKmemmove(detectorValues->origQuotaMeanStrongest, detectorValues->origQuotaMeanStrongest + 1, INVF_SMOOTHING_LENGTH*sizeof(FIXP_DBL));
FDKmemmove(detectorValues->sbrQuotaMeanStrongest, detectorValues->sbrQuotaMeanStrongest + 1, INVF_SMOOTHING_LENGTH*sizeof(FIXP_DBL));
detectorValues->origQuotaMean[INVF_SMOOTHING_LENGTH] = origQuota<<1;
detectorValues->sbrQuotaMean[INVF_SMOOTHING_LENGTH] = sbrQuota<<1;
detectorValues->origQuotaMeanStrongest[INVF_SMOOTHING_LENGTH] = origQuotaMeanStrongest<<1;
detectorValues->sbrQuotaMeanStrongest[INVF_SMOOTHING_LENGTH] = sbrQuotaMeanStrongest<<1;
/*
Filter values
*/
detectorValues->origQuotaMeanFilt = FL2FXCONST_DBL(0.0f);
detectorValues->sbrQuotaMeanFilt = FL2FXCONST_DBL(0.0f);
detectorValues->origQuotaMeanStrongestFilt = FL2FXCONST_DBL(0.0f);
detectorValues->sbrQuotaMeanStrongestFilt = FL2FXCONST_DBL(0.0f);
for(i=0;i<INVF_SMOOTHING_LENGTH+1;i++) {
detectorValues->origQuotaMeanFilt += fMult(detectorValues->origQuotaMean[i], filter[i]);
detectorValues->sbrQuotaMeanFilt += fMult(detectorValues->sbrQuotaMean[i], filter[i]);
detectorValues->origQuotaMeanStrongestFilt += fMult(detectorValues->origQuotaMeanStrongest[i], filter[i]);
detectorValues->sbrQuotaMeanStrongestFilt += fMult(detectorValues->sbrQuotaMeanStrongest[i], filter[i]);
}
}
/**************************************************************************/
/*!
\brief Returns the region in which the input value belongs.
\return region.
*/
/**************************************************************************/
static INT
findRegion(FIXP_DBL currVal, /*!< The current value. */
const FIXP_DBL *borders, /*!< The border of the regions. */
const INT numBorders /*!< The number of borders. */
)
{
INT i;
if(currVal < borders[0]){
return 0;
}
for(i = 1; i < numBorders; i++){
if( currVal >= borders[i-1] && currVal < borders[i]){
return i;
}
}
if(currVal >= borders[numBorders-1]){
return numBorders;
}
return 0; /* We never get here, it's just to avoid compiler warnings.*/
}
/**************************************************************************/
/*!
\brief Makes a clever decision based on the quota vector.
\return decision on which invf mode to use
*/
/**************************************************************************/
static INVF_MODE
decisionAlgorithm(const DETECTOR_PARAMETERS *detectorParams, /*!< Struct with the detector parameters. */
DETECTOR_VALUES *detectorValues, /*!< Struct with the detector values. */
INT transientFlag, /*!< Flag indicating if there is a transient present.*/
INT* prevRegionSbr, /*!< The previous region in which the Sbr value was. */
INT* prevRegionOrig /*!< The previous region in which the Orig value was. */
)
{
INT invFiltLevel, regionSbr, regionOrig, regionNrg;
/*
Current thresholds.
*/
const FIXP_DBL *quantStepsSbr = detectorParams->quantStepsSbr;
const FIXP_DBL *quantStepsOrig = detectorParams->quantStepsOrig;
const FIXP_DBL *nrgBorders = detectorParams->nrgBorders;
const INT numRegionsSbr = detectorParams->numRegionsSbr;
const INT numRegionsOrig = detectorParams->numRegionsOrig;
const INT numRegionsNrg = detectorParams->numRegionsNrg;
FIXP_DBL quantStepsSbrTmp[MAX_NUM_REGIONS];
FIXP_DBL quantStepsOrigTmp[MAX_NUM_REGIONS];
/*
Current detector values.
*/
FIXP_DBL origQuotaMeanFilt;
FIXP_DBL sbrQuotaMeanFilt;
FIXP_DBL nrg;
/* 0.375 = 3.0 / 8.0; 0.31143075889 = log2(RELAXATION)/64.0; 0.625 = log(16)/64.0; 0.6875 = 44/64.0 */
origQuotaMeanFilt = (fMultDiv2(FL2FXCONST_DBL(2.f*0.375f), (FIXP_DBL)(CalcLdData(max(detectorValues->origQuotaMeanFilt,(FIXP_DBL)1)) + FL2FXCONST_DBL(0.31143075889f)))) << 0; /* scaled by 1/2^9 */
sbrQuotaMeanFilt = (fMultDiv2(FL2FXCONST_DBL(2.f*0.375f), (FIXP_DBL)(CalcLdData(max(detectorValues->sbrQuotaMeanFilt,(FIXP_DBL)1)) + FL2FXCONST_DBL(0.31143075889f)))) << 0; /* scaled by 1/2^9 */
/* If energy is zero then we will get different results for different word lengths. */
nrg = (fMultDiv2(FL2FXCONST_DBL(2.f*0.375f), (FIXP_DBL)(CalcLdData(detectorValues->avgNrg+(FIXP_DBL)1) + FL2FXCONST_DBL(0.0625f) + FL2FXCONST_DBL(0.6875f)))) << 0; /* scaled by 1/2^8; 2^44 -> qmf energy scale */
FDKmemcpy(quantStepsSbrTmp,quantStepsSbr,numRegionsSbr*sizeof(FIXP_DBL));
FDKmemcpy(quantStepsOrigTmp,quantStepsOrig,numRegionsOrig*sizeof(FIXP_DBL));
if(*prevRegionSbr < numRegionsSbr)
quantStepsSbrTmp[*prevRegionSbr] = quantStepsSbr[*prevRegionSbr] + hysteresis;
if(*prevRegionSbr > 0)
quantStepsSbrTmp[*prevRegionSbr - 1] = quantStepsSbr[*prevRegionSbr - 1] - hysteresis;
if(*prevRegionOrig < numRegionsOrig)
quantStepsOrigTmp[*prevRegionOrig] = quantStepsOrig[*prevRegionOrig] + hysteresis;
if(*prevRegionOrig > 0)
quantStepsOrigTmp[*prevRegionOrig - 1] = quantStepsOrig[*prevRegionOrig - 1] - hysteresis;
regionSbr = findRegion(sbrQuotaMeanFilt, quantStepsSbrTmp, numRegionsSbr);
regionOrig = findRegion(origQuotaMeanFilt, quantStepsOrigTmp, numRegionsOrig);
regionNrg = findRegion(nrg,nrgBorders,numRegionsNrg);
*prevRegionSbr = regionSbr;
*prevRegionOrig = regionOrig;
/* Use different settings if a transient is present*/
invFiltLevel = (transientFlag == 1) ? detectorParams->regionSpaceTransient[regionSbr][regionOrig]
: detectorParams->regionSpace[regionSbr][regionOrig];
/* Compensate for low energy.*/
invFiltLevel = max(invFiltLevel + detectorParams->EnergyCompFactor[regionNrg],0);
return (INVF_MODE) (invFiltLevel);
}
/**************************************************************************/
/*!
\brief Estiamtion of the inverse filtering level required
in the decoder.
A second order LPC is calculated for every filterbank channel, using
the covariance method. THe ratio between the energy of the predicted
signal and the energy of the non-predictable signal is calcualted.
\return none.
*/
/**************************************************************************/
void
FDKsbrEnc_qmfInverseFilteringDetector(HANDLE_SBR_INV_FILT_EST hInvFilt, /*!< Handle to the SBR_INV_FILT_EST struct. */
FIXP_DBL **quotaMatrix, /*!< The matrix holding the tonality values of the original. */
FIXP_DBL *nrgVector, /*!< The energy vector. */
SCHAR *indexVector, /*!< Index vector to obtain the patched data. */
INT startIndex, /*!< Start index. */
INT stopIndex, /*!< Stop index. */
INT transientFlag, /*!< Flag indicating if a transient is present or not.*/
INVF_MODE* infVec /*!< Vector holding the inverse filtering levels. */
)
{
INT band;
/*
* Do the inverse filtering level estimation.
*****************************************************/
for(band = 0 ; band < hInvFilt->noDetectorBands; band++){
INT startChannel = hInvFilt->freqBandTableInvFilt[band];
INT stopChannel = hInvFilt->freqBandTableInvFilt[band+1];
calculateDetectorValues( quotaMatrix,
indexVector,
nrgVector,
&hInvFilt->detectorValues[band],
startChannel,
stopChannel,
startIndex,
stopIndex,
hInvFilt->numberOfStrongest);
infVec[band]= decisionAlgorithm( hInvFilt->detectorParams,
&hInvFilt->detectorValues[band],
transientFlag,
&hInvFilt->prevRegionSbr[band],
&hInvFilt->prevRegionOrig[band]);
}
}
/**************************************************************************/
/*!
\brief Initialize an instance of the inverse filtering level estimator.
\return errorCode, noError if successful.
*/
/**************************************************************************/
INT
FDKsbrEnc_initInvFiltDetector (HANDLE_SBR_INV_FILT_EST hInvFilt, /*!< Pointer to a handle to the SBR_INV_FILT_EST struct. */
INT* freqBandTableDetector, /*!< Frequency band table for the inverse filtering. */
INT numDetectorBands, /*!< Number of inverse filtering bands. */
UINT useSpeechConfig /*!< Flag: adapt tuning parameters according to speech*/
)
{
INT i;
FDKmemclear( hInvFilt,sizeof(SBR_INV_FILT_EST));
hInvFilt->detectorParams = (useSpeechConfig) ? &detectorParamsAACSpeech
: &detectorParamsAAC ;
hInvFilt->noDetectorBandsMax = numDetectorBands;
/*
Memory initialisation
*/
for(i=0;i<hInvFilt->noDetectorBandsMax;i++){
FDKmemclear(&hInvFilt->detectorValues[i], sizeof(DETECTOR_VALUES));
hInvFilt->prevInvfMode[i] = INVF_OFF;
hInvFilt->prevRegionOrig[i] = 0;
hInvFilt->prevRegionSbr[i] = 0;
}
/*
Reset the inverse fltering detector.
*/
FDKsbrEnc_resetInvFiltDetector(hInvFilt,
freqBandTableDetector,
hInvFilt->noDetectorBandsMax);
return (0);
}
/**************************************************************************/
/*!
\brief resets sbr inverse filtering structure.
\return errorCode, noError if successful.
*/
/**************************************************************************/
INT
FDKsbrEnc_resetInvFiltDetector(HANDLE_SBR_INV_FILT_EST hInvFilt, /*!< Handle to the SBR_INV_FILT_EST struct. */
INT* freqBandTableDetector, /*!< Frequency band table for the inverse filtering. */
INT numDetectorBands) /*!< Number of inverse filtering bands. */
{
hInvFilt->numberOfStrongest = 1;
FDKmemcpy(hInvFilt->freqBandTableInvFilt,freqBandTableDetector,(numDetectorBands+1)*sizeof(INT));
hInvFilt->noDetectorBands = numDetectorBands;
return (0);
}
|