1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
|
/* -----------------------------------------------------------------------------------------------------------
Software License for The Fraunhofer FDK AAC Codec Library for Android
� Copyright 1995 - 2012 Fraunhofer-Gesellschaft zur F�rderung der angewandten Forschung e.V.
All rights reserved.
1. INTRODUCTION
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements
the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio.
This FDK AAC Codec software is intended to be used on a wide variety of Android devices.
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual
audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by
independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part
of the MPEG specifications.
Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer)
may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners
individually for the purpose of encoding or decoding bit streams in products that are compliant with
the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license
these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec
software may already be covered under those patent licenses when it is used for those licensed purposes only.
Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality,
are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional
applications information and documentation.
2. COPYRIGHT LICENSE
Redistribution and use in source and binary forms, with or without modification, are permitted without
payment of copyright license fees provided that you satisfy the following conditions:
You must retain the complete text of this software license in redistributions of the FDK AAC Codec or
your modifications thereto in source code form.
You must retain the complete text of this software license in the documentation and/or other materials
provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form.
You must make available free of charge copies of the complete source code of the FDK AAC Codec and your
modifications thereto to recipients of copies in binary form.
The name of Fraunhofer may not be used to endorse or promote products derived from this library without
prior written permission.
You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec
software or your modifications thereto.
Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software
and the date of any change. For modified versions of the FDK AAC Codec, the term
"Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term
"Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android."
3. NO PATENT LICENSE
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer,
ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with
respect to this software.
You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized
by appropriate patent licenses.
4. DISCLAIMER
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors
"AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties
of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages,
including but not limited to procurement of substitute goods or services; loss of use, data, or profits,
or business interruption, however caused and on any theory of liability, whether in contract, strict
liability, or tort (including negligence), arising in any way out of the use of this software, even if
advised of the possibility of such damage.
5. CONTACT INFORMATION
Fraunhofer Institute for Integrated Circuits IIS
Attention: Audio and Multimedia Departments - FDK AAC LL
Am Wolfsmantel 33
91058 Erlangen, Germany
www.iis.fraunhofer.de/amm
amm-info@iis.fraunhofer.de
----------------------------------------------------------------------------------------------------------- */
/*!
\file
\brief parametric stereo decoder
*/
#include "psdec.h"
#include "FDK_bitbuffer.h"
#include "psdec_hybrid.h"
#include "sbr_rom.h"
#include "sbr_ram.h"
#include "FDK_tools_rom.h"
#include "genericStds.h"
#include "FDK_trigFcts.h"
/********************************************************************/
/* MLQUAL DEFINES */
/********************************************************************/
#define FRACT_ZERO FRACT_BITS-1
/********************************************************************/
SBR_ERROR ResetPsDec( HANDLE_PS_DEC h_ps_d );
void ResetPsDeCor( HANDLE_PS_DEC h_ps_d );
/***** HELPERS *****/
static void assignTimeSlotsPS (FIXP_DBL *bufAdr, FIXP_DBL **bufPtr, const int numSlots, const int numChan);
/*******************/
#define DIV3 FL2FXCONST_DBL(1.f/3.f) /* division 3.0 */
#define DIV1_5 FL2FXCONST_DBL(2.f/3.f) /* division 1.5 */
/***************************************************************************/
/*!
\brief Creates one instance of the PS_DEC struct
\return Error info
****************************************************************************/
int
CreatePsDec( HANDLE_PS_DEC *h_PS_DEC, /*!< pointer to the module state */
int aacSamplesPerFrame
)
{
SBR_ERROR errorInfo = SBRDEC_OK;
HANDLE_PS_DEC h_ps_d;
int i;
if (*h_PS_DEC == NULL) {
/* Get ps dec ram */
h_ps_d = GetRam_ps_dec();
if (h_ps_d == NULL) {
errorInfo = SBRDEC_MEM_ALLOC_FAILED;
goto bail;
}
} else {
/* Reset an open instance */
h_ps_d = *h_PS_DEC;
}
/* initialisation */
switch (aacSamplesPerFrame) {
case 960:
h_ps_d->noSubSamples = 30; /* col */
break;
case 1024:
h_ps_d->noSubSamples = 32; /* col */
break;
default:
h_ps_d->noSubSamples = -1;
break;
}
if (h_ps_d->noSubSamples > MAX_NUM_COL
|| h_ps_d->noSubSamples <= 0)
{
goto bail;
}
h_ps_d->noChannels = NO_QMF_CHANNELS; /* row */
h_ps_d->psDecodedPrv = 0;
h_ps_d->procFrameBased = -1;
for (i = 0; i < (1)+1; i++) {
h_ps_d->bPsDataAvail[i] = ppt_none;
}
for (i = 0; i < (1)+1; i++) {
FDKmemclear(&h_ps_d->bsData[i].mpeg, sizeof(MPEG_PS_BS_DATA));
}
errorInfo = ResetPsDec( h_ps_d );
if ( errorInfo != SBRDEC_OK )
goto bail;
ResetPsDeCor( h_ps_d );
*h_PS_DEC = h_ps_d;
return 0;
bail:
DeletePsDec(&h_ps_d);
return -1;
} /*END CreatePsDec */
/***************************************************************************/
/*!
\brief Delete one instance of the PS_DEC struct
\return Error info
****************************************************************************/
int
DeletePsDec( HANDLE_PS_DEC *h_PS_DEC) /*!< pointer to the module state */
{
if (*h_PS_DEC == NULL) {
return -1;
}
FreeRam_ps_dec(h_PS_DEC);
return 0;
} /*END DeletePsDec */
/***************************************************************************/
/*!
\brief resets some values of the PS handle to default states
\return
****************************************************************************/
SBR_ERROR ResetPsDec( HANDLE_PS_DEC h_ps_d ) /*!< pointer to the module state */
{
SBR_ERROR errorInfo = SBRDEC_OK;
INT i;
const UCHAR noQmfBandsInHybrid20 = 3;
/* const UCHAR noQmfBandsInHybrid34 = 5; */
const UCHAR aHybridResolution20[] = { HYBRID_8_CPLX,
HYBRID_2_REAL,
HYBRID_2_REAL };
h_ps_d->specificTo.mpeg.delayBufIndex = 0;
/* explicitly init state variables to safe values (until first ps header arrives) */
h_ps_d->specificTo.mpeg.lastUsb = 0;
h_ps_d->specificTo.mpeg.scaleFactorPsDelayBuffer = -(DFRACT_BITS-1);
FDKmemclear(h_ps_d->specificTo.mpeg.aDelayBufIndexDelayQmf, (NO_QMF_CHANNELS-FIRST_DELAY_SB)*sizeof(UCHAR));
h_ps_d->specificTo.mpeg.noSampleDelay = delayIndexQmf[0];
for (i=0 ; i < NO_SERIAL_ALLPASS_LINKS; i++) {
h_ps_d->specificTo.mpeg.aDelayRBufIndexSer[i] = 0;
}
h_ps_d->specificTo.mpeg.pAaRealDelayBufferQmf[0] = h_ps_d->specificTo.mpeg.aaQmfDelayBufReal;
assignTimeSlotsPS ( h_ps_d->specificTo.mpeg.pAaRealDelayBufferQmf[0] + (NO_QMF_CHANNELS-FIRST_DELAY_SB),
&h_ps_d->specificTo.mpeg.pAaRealDelayBufferQmf[1],
h_ps_d->specificTo.mpeg.noSampleDelay-1,
(NO_DELAY_BUFFER_BANDS-FIRST_DELAY_SB));
h_ps_d->specificTo.mpeg.pAaImagDelayBufferQmf[0] = h_ps_d->specificTo.mpeg.aaQmfDelayBufImag;
assignTimeSlotsPS ( h_ps_d->specificTo.mpeg.pAaImagDelayBufferQmf[0] + (NO_QMF_CHANNELS-FIRST_DELAY_SB),
&h_ps_d->specificTo.mpeg.pAaImagDelayBufferQmf[1],
h_ps_d->specificTo.mpeg.noSampleDelay-1,
(NO_DELAY_BUFFER_BANDS-FIRST_DELAY_SB));
/* Hybrid Filter Bank 1 creation. */
errorInfo = InitHybridFilterBank ( &h_ps_d->specificTo.mpeg.hybrid,
h_ps_d->noSubSamples,
noQmfBandsInHybrid20,
aHybridResolution20 );
for ( i = 0; i < NO_IID_GROUPS; i++ )
{
h_ps_d->specificTo.mpeg.h11rPrev[i] = FL2FXCONST_DBL(0.5f);
h_ps_d->specificTo.mpeg.h12rPrev[i] = FL2FXCONST_DBL(0.5f);
}
FDKmemclear( h_ps_d->specificTo.mpeg.h21rPrev, sizeof( h_ps_d->specificTo.mpeg.h21rPrev ) );
FDKmemclear( h_ps_d->specificTo.mpeg.h22rPrev, sizeof( h_ps_d->specificTo.mpeg.h22rPrev ) );
return errorInfo;
}
/***************************************************************************/
/*!
\brief clear some buffers used in decorrelation process
\return
****************************************************************************/
void ResetPsDeCor( HANDLE_PS_DEC h_ps_d ) /*!< pointer to the module state */
{
INT i;
FDKmemclear(h_ps_d->specificTo.mpeg.aPeakDecayFastBin, NO_MID_RES_BINS*sizeof(FIXP_DBL));
FDKmemclear(h_ps_d->specificTo.mpeg.aPrevNrgBin, NO_MID_RES_BINS*sizeof(FIXP_DBL));
FDKmemclear(h_ps_d->specificTo.mpeg.aPrevPeakDiffBin, NO_MID_RES_BINS*sizeof(FIXP_DBL));
FDKmemclear(h_ps_d->specificTo.mpeg.aPowerPrevScal, NO_MID_RES_BINS*sizeof(SCHAR));
for (i=0 ; i < FIRST_DELAY_SB ; i++) {
FDKmemclear(h_ps_d->specificTo.mpeg.aaaRealDelayRBufferSerQmf[i], NO_DELAY_LENGTH_VECTORS*sizeof(FIXP_DBL));
FDKmemclear(h_ps_d->specificTo.mpeg.aaaImagDelayRBufferSerQmf[i], NO_DELAY_LENGTH_VECTORS*sizeof(FIXP_DBL));
}
for (i=0 ; i < NO_SUB_QMF_CHANNELS ; i++) {
FDKmemclear(h_ps_d->specificTo.mpeg.aaaRealDelayRBufferSerSubQmf[i], NO_DELAY_LENGTH_VECTORS*sizeof(FIXP_DBL));
FDKmemclear(h_ps_d->specificTo.mpeg.aaaImagDelayRBufferSerSubQmf[i], NO_DELAY_LENGTH_VECTORS*sizeof(FIXP_DBL));
}
}
/*******************************************************************************/
/* slot based funcion prototypes */
static void deCorrelateSlotBased( HANDLE_PS_DEC h_ps_d,
FIXP_DBL *mHybridRealLeft,
FIXP_DBL *mHybridImagLeft,
SCHAR sf_mHybridLeft,
FIXP_DBL *rIntBufferLeft,
FIXP_DBL *iIntBufferLeft,
SCHAR sf_IntBuffer,
FIXP_DBL *mHybridRealRight,
FIXP_DBL *mHybridImagRight,
FIXP_DBL *rIntBufferRight,
FIXP_DBL *iIntBufferRight );
static void applySlotBasedRotation( HANDLE_PS_DEC h_ps_d,
FIXP_DBL *mHybridRealLeft,
FIXP_DBL *mHybridImagLeft,
FIXP_DBL *QmfLeftReal,
FIXP_DBL *QmfLeftImag,
FIXP_DBL *mHybridRealRight,
FIXP_DBL *mHybridImagRight,
FIXP_DBL *QmfRightReal,
FIXP_DBL *QmfRightImag
);
/***************************************************************************/
/*!
\brief Get scale factor for all ps delay buffer.
\return
****************************************************************************/
static
int getScaleFactorPsStatesBuffer(HANDLE_PS_DEC h_ps_d)
{
INT i;
int scale = DFRACT_BITS-1;
for (i=0; i<NO_QMF_BANDS_HYBRID20; i++) {
scale = fMin(scale, getScalefactor(h_ps_d->specificTo.mpeg.hybrid.mQmfBufferRealSlot[i], NO_SUB_QMF_CHANNELS));
scale = fMin(scale, getScalefactor(h_ps_d->specificTo.mpeg.hybrid.mQmfBufferImagSlot[i], NO_SUB_QMF_CHANNELS));
}
for (i=0; i<NO_SAMPLE_DELAY_ALLPASS; i++) {
scale = fMin(scale, getScalefactor(h_ps_d->specificTo.mpeg.aaRealDelayBufferQmf[i], FIRST_DELAY_SB));
scale = fMin(scale, getScalefactor(h_ps_d->specificTo.mpeg.aaImagDelayBufferQmf[i], FIRST_DELAY_SB));
}
for (i=0; i<NO_SAMPLE_DELAY_ALLPASS; i++) {
scale = fMin(scale, getScalefactor(h_ps_d->specificTo.mpeg.aaRealDelayBufferSubQmf[i], NO_SUB_QMF_CHANNELS));
scale = fMin(scale, getScalefactor(h_ps_d->specificTo.mpeg.aaImagDelayBufferSubQmf[i], NO_SUB_QMF_CHANNELS));
}
for (i=0; i<FIRST_DELAY_SB; i++) {
scale = fMin(scale, getScalefactor(h_ps_d->specificTo.mpeg.aaaRealDelayRBufferSerQmf[i], NO_DELAY_LENGTH_VECTORS));
scale = fMin(scale, getScalefactor(h_ps_d->specificTo.mpeg.aaaImagDelayRBufferSerQmf[i], NO_DELAY_LENGTH_VECTORS));
}
for (i=0; i<NO_SUB_QMF_CHANNELS; i++) {
scale = fMin(scale, getScalefactor(h_ps_d->specificTo.mpeg.aaaRealDelayRBufferSerSubQmf[i], NO_DELAY_LENGTH_VECTORS));
scale = fMin(scale, getScalefactor(h_ps_d->specificTo.mpeg.aaaImagDelayRBufferSerSubQmf[i], NO_DELAY_LENGTH_VECTORS));
}
for (i=0; i<MAX_DELAY_BUFFER_SIZE; i++)
{
INT len;
if (i==0)
len = NO_QMF_CHANNELS-FIRST_DELAY_SB;
else
len = NO_DELAY_BUFFER_BANDS-FIRST_DELAY_SB;
scale = fMin(scale, getScalefactor(h_ps_d->specificTo.mpeg.pAaRealDelayBufferQmf[i], len));
scale = fMin(scale, getScalefactor(h_ps_d->specificTo.mpeg.pAaImagDelayBufferQmf[i], len));
}
return (scale);
}
/***************************************************************************/
/*!
\brief Rescale all ps delay buffer.
\return
****************************************************************************/
static
void scalePsStatesBuffer(HANDLE_PS_DEC h_ps_d,
int scale)
{
INT i;
if (scale < 0)
scale = fixMax((INT)scale,(INT)-(DFRACT_BITS-1));
else
scale = fixMin((INT)scale,(INT)DFRACT_BITS-1);
for (i=0; i<NO_QMF_BANDS_HYBRID20; i++) {
scaleValues( h_ps_d->specificTo.mpeg.hybrid.mQmfBufferRealSlot[i], NO_SUB_QMF_CHANNELS, scale );
scaleValues( h_ps_d->specificTo.mpeg.hybrid.mQmfBufferImagSlot[i], NO_SUB_QMF_CHANNELS, scale );
}
for (i=0; i<NO_SAMPLE_DELAY_ALLPASS; i++) {
scaleValues( h_ps_d->specificTo.mpeg.aaRealDelayBufferQmf[i], FIRST_DELAY_SB, scale );
scaleValues( h_ps_d->specificTo.mpeg.aaImagDelayBufferQmf[i], FIRST_DELAY_SB, scale );
}
for (i=0; i<NO_SAMPLE_DELAY_ALLPASS; i++) {
scaleValues( h_ps_d->specificTo.mpeg.aaRealDelayBufferSubQmf[i], NO_SUB_QMF_CHANNELS, scale );
scaleValues( h_ps_d->specificTo.mpeg.aaImagDelayBufferSubQmf[i], NO_SUB_QMF_CHANNELS, scale );
}
for (i=0; i<FIRST_DELAY_SB; i++) {
scaleValues( h_ps_d->specificTo.mpeg.aaaRealDelayRBufferSerQmf[i], NO_DELAY_LENGTH_VECTORS, scale );
scaleValues( h_ps_d->specificTo.mpeg.aaaImagDelayRBufferSerQmf[i], NO_DELAY_LENGTH_VECTORS, scale );
}
for (i=0; i<NO_SUB_QMF_CHANNELS; i++) {
scaleValues( h_ps_d->specificTo.mpeg.aaaRealDelayRBufferSerSubQmf[i], NO_DELAY_LENGTH_VECTORS, scale );
scaleValues( h_ps_d->specificTo.mpeg.aaaImagDelayRBufferSerSubQmf[i], NO_DELAY_LENGTH_VECTORS, scale );
}
for (i=0; i<MAX_DELAY_BUFFER_SIZE; i++) {
INT len;
if (i==0)
len = NO_QMF_CHANNELS-FIRST_DELAY_SB;
else
len = NO_DELAY_BUFFER_BANDS-FIRST_DELAY_SB;
scaleValues( h_ps_d->specificTo.mpeg.pAaRealDelayBufferQmf[i], len, scale );
scaleValues( h_ps_d->specificTo.mpeg.pAaImagDelayBufferQmf[i], len, scale );
}
scale <<= 1;
scaleValues( h_ps_d->specificTo.mpeg.aPeakDecayFastBin, NO_MID_RES_BINS, scale );
scaleValues( h_ps_d->specificTo.mpeg.aPrevPeakDiffBin, NO_MID_RES_BINS, scale );
scaleValues( h_ps_d->specificTo.mpeg.aPrevNrgBin, NO_MID_RES_BINS, scale );
}
/***************************************************************************/
/*!
\brief Scale input channel to the same scalefactor and rescale hybrid
filterbank values
\return
****************************************************************************/
void scalFilterBankValues( HANDLE_PS_DEC h_ps_d,
FIXP_DBL **fixpQmfReal,
FIXP_DBL **fixpQmfImag,
int lsb,
int scaleFactorLowBandSplitLow,
int scaleFactorLowBandSplitHigh,
SCHAR *scaleFactorLowBand_lb,
SCHAR *scaleFactorLowBand_hb,
int scaleFactorHighBands,
INT *scaleFactorHighBand,
INT noCols
)
{
INT maxScal;
INT i;
scaleFactorHighBands = -scaleFactorHighBands;
scaleFactorLowBandSplitLow = -scaleFactorLowBandSplitLow;
scaleFactorLowBandSplitHigh = -scaleFactorLowBandSplitHigh;
/* get max scale factor */
maxScal = fixMax(scaleFactorHighBands,fixMax(scaleFactorLowBandSplitLow, scaleFactorLowBandSplitHigh ));
{
int headroom = getScaleFactorPsStatesBuffer(h_ps_d);
maxScal = fixMax(maxScal,(INT)(h_ps_d->specificTo.mpeg.scaleFactorPsDelayBuffer-headroom));
maxScal += 1;
}
/* scale whole left channel to the same scale factor */
/* low band ( overlap buffer ) */
if ( maxScal != scaleFactorLowBandSplitLow ) {
INT scale = scaleFactorLowBandSplitLow - maxScal;
for ( i=0; i<(6); i++ ) {
scaleValues( fixpQmfReal[i], lsb, scale );
scaleValues( fixpQmfImag[i], lsb, scale );
}
}
/* low band ( current frame ) */
if ( maxScal != scaleFactorLowBandSplitHigh ) {
INT scale = scaleFactorLowBandSplitHigh - maxScal;
/* for ( i=(6); i<(6)+MAX_NUM_COL; i++ ) { */
for ( i=(6); i<(6)+noCols; i++ ) {
scaleValues( fixpQmfReal[i], lsb, scale );
scaleValues( fixpQmfImag[i], lsb, scale );
}
}
/* high band */
if ( maxScal != scaleFactorHighBands ) {
INT scale = scaleFactorHighBands - maxScal;
/* for ( i=0; i<MAX_NUM_COL; i++ ) { */
for ( i=0; i<noCols; i++ ) {
scaleValues( &fixpQmfReal[i][lsb], (64)-lsb, scale );
scaleValues( &fixpQmfImag[i][lsb], (64)-lsb, scale );
}
}
if ( maxScal != h_ps_d->specificTo.mpeg.scaleFactorPsDelayBuffer )
scalePsStatesBuffer(h_ps_d,(h_ps_d->specificTo.mpeg.scaleFactorPsDelayBuffer-maxScal));
h_ps_d->specificTo.mpeg.hybrid.sf_mQmfBuffer = maxScal;
h_ps_d->specificTo.mpeg.scaleFactorPsDelayBuffer = maxScal;
*scaleFactorHighBand += maxScal - scaleFactorHighBands;
h_ps_d->rescal = maxScal - scaleFactorLowBandSplitHigh;
h_ps_d->sf_IntBuffer = maxScal;
*scaleFactorLowBand_lb += maxScal - scaleFactorLowBandSplitLow;
*scaleFactorLowBand_hb += maxScal - scaleFactorLowBandSplitHigh;
}
void rescalFilterBankValues( HANDLE_PS_DEC h_ps_d, /* parametric stereo decoder handle */
FIXP_DBL **QmfBufferReal, /* qmf filterbank values */
FIXP_DBL **QmfBufferImag, /* qmf filterbank values */
int lsb, /* sbr start subband */
INT noCols)
{
int i;
/* scale back 6 timeslots look ahead for hybrid filterbank to original value */
for ( i=noCols; i<noCols + (6); i++ ) {
scaleValues( QmfBufferReal[i], lsb, h_ps_d->rescal );
scaleValues( QmfBufferImag[i], lsb, h_ps_d->rescal );
}
}
/***************************************************************************/
/*!
\brief Generate decorrelated side channel using allpass/delay
\return
****************************************************************************/
static void
deCorrelateSlotBased( HANDLE_PS_DEC h_ps_d, /*!< pointer to the module state */
FIXP_DBL *mHybridRealLeft, /*!< left (mono) hybrid values real */
FIXP_DBL *mHybridImagLeft, /*!< left (mono) hybrid values imag */
SCHAR sf_mHybridLeft, /*!< scalefactor for left (mono) hybrid bands */
FIXP_DBL *rIntBufferLeft, /*!< real qmf bands left (mono) (38x64) */
FIXP_DBL *iIntBufferLeft, /*!< real qmf bands left (mono) (38x64) */
SCHAR sf_IntBuffer, /*!< scalefactor for all left and right qmf bands */
FIXP_DBL *mHybridRealRight, /*!< right (decorrelated) hybrid values real */
FIXP_DBL *mHybridImagRight, /*!< right (decorrelated) hybrid values imag */
FIXP_DBL *rIntBufferRight, /*!< real qmf bands right (decorrelated) (38x64) */
FIXP_DBL *iIntBufferRight ) /*!< real qmf bands right (decorrelated) (38x64) */
{
INT i, m, sb, gr, bin;
FIXP_DBL peakDiff, nrg, transRatio;
FIXP_DBL *RESTRICT aaLeftReal;
FIXP_DBL *RESTRICT aaLeftImag;
FIXP_DBL *RESTRICT aaRightReal;
FIXP_DBL *RESTRICT aaRightImag;
FIXP_DBL *RESTRICT pRealDelayBuffer;
FIXP_DBL *RESTRICT pImagDelayBuffer;
C_ALLOC_SCRATCH_START(aaPowerSlot, FIXP_DBL, NO_MID_RES_BINS);
C_ALLOC_SCRATCH_START(aaTransRatioSlot, FIXP_DBL, NO_MID_RES_BINS);
/*!
<pre>
parameter index qmf bands hybrid bands
----------------------------------------------------------------------------
0 0 0,7
1 0 1,6
2 0 2
3 0 3 HYBRID BANDS
4 1 9
5 1 8
6 2 10
7 2 11
----------------------------------------------------------------------------
8 3
9 4
10 5
11 6
12 7
13 8
14 9,10 (2 ) QMF BANDS
15 11 - 13 (3 )
16 14 - 17 (4 )
17 18 - 22 (5 )
18 23 - 34 (12)
19 35 - 63 (29)
----------------------------------------------------------------------------
</pre>
*/
#define FLTR_SCALE 3
/* hybrid bands (parameter index 0 - 7) */
aaLeftReal = mHybridRealLeft;
aaLeftImag = mHybridImagLeft;
aaPowerSlot[0] = ( fMultAddDiv2( fMultDiv2(aaLeftReal[0], aaLeftReal[0]), aaLeftImag[0], aaLeftImag[0] ) >> FLTR_SCALE ) +
( fMultAddDiv2( fMultDiv2(aaLeftReal[7], aaLeftReal[7]), aaLeftImag[7], aaLeftImag[7] ) >> FLTR_SCALE );
aaPowerSlot[1] = ( fMultAddDiv2( fMultDiv2(aaLeftReal[1], aaLeftReal[1]), aaLeftImag[1], aaLeftImag[1] ) >> FLTR_SCALE ) +
( fMultAddDiv2( fMultDiv2(aaLeftReal[6], aaLeftReal[6]), aaLeftImag[6], aaLeftImag[6] ) >> FLTR_SCALE );
aaPowerSlot[2] = fMultAddDiv2( fMultDiv2(aaLeftReal[2], aaLeftReal[2]), aaLeftImag[2], aaLeftImag[2] ) >> FLTR_SCALE;
aaPowerSlot[3] = fMultAddDiv2( fMultDiv2(aaLeftReal[3], aaLeftReal[3]), aaLeftImag[3], aaLeftImag[3] ) >> FLTR_SCALE;
aaPowerSlot[4] = fMultAddDiv2( fMultDiv2(aaLeftReal[9], aaLeftReal[9]), aaLeftImag[9], aaLeftImag[9] ) >> FLTR_SCALE;
aaPowerSlot[5] = fMultAddDiv2( fMultDiv2(aaLeftReal[8], aaLeftReal[8]), aaLeftImag[8], aaLeftImag[8] ) >> FLTR_SCALE;
aaPowerSlot[6] = fMultAddDiv2( fMultDiv2(aaLeftReal[10], aaLeftReal[10]), aaLeftImag[10], aaLeftImag[10] ) >> FLTR_SCALE;
aaPowerSlot[7] = fMultAddDiv2( fMultDiv2(aaLeftReal[11], aaLeftReal[11]), aaLeftImag[11], aaLeftImag[11] ) >> FLTR_SCALE;
/* qmf bands (parameter index 8 - 19) */
for ( bin = 8; bin < NO_MID_RES_BINS; bin++ ) {
FIXP_DBL slotNrg = FL2FXCONST_DBL(0.f);
for ( i = groupBorders20[bin+2]; i < groupBorders20[bin+3]; i++ ) { /* max loops: 29 */
slotNrg += fMultAddDiv2 ( fMultDiv2(rIntBufferLeft[i], rIntBufferLeft[i]), iIntBufferLeft[i], iIntBufferLeft[i]) >> FLTR_SCALE;
}
aaPowerSlot[bin] = slotNrg;
}
/* calculation of transient ratio */
for (bin=0; bin < NO_MID_RES_BINS; bin++) { /* noBins = 20 ( BASELINE_PS ) */
h_ps_d->specificTo.mpeg.aPeakDecayFastBin[bin] = fMult( h_ps_d->specificTo.mpeg.aPeakDecayFastBin[bin], PEAK_DECAY_FACTOR );
if (h_ps_d->specificTo.mpeg.aPeakDecayFastBin[bin] < aaPowerSlot[bin]) {
h_ps_d->specificTo.mpeg.aPeakDecayFastBin[bin] = aaPowerSlot[bin];
}
/* calculate PSmoothPeakDecayDiffNrg */
peakDiff = fMultAdd ( (h_ps_d->specificTo.mpeg.aPrevPeakDiffBin[bin]>>1),
INT_FILTER_COEFF, h_ps_d->specificTo.mpeg.aPeakDecayFastBin[bin] - aaPowerSlot[bin] - h_ps_d->specificTo.mpeg.aPrevPeakDiffBin[bin]);
/* save peakDiff for the next frame */
h_ps_d->specificTo.mpeg.aPrevPeakDiffBin[bin] = peakDiff;
nrg = h_ps_d->specificTo.mpeg.aPrevNrgBin[bin] + fMult( INT_FILTER_COEFF, aaPowerSlot[bin] - h_ps_d->specificTo.mpeg.aPrevNrgBin[bin] );
/* Negative energies don't exist. But sometimes they appear due to rounding. */
nrg = fixMax(nrg,FL2FXCONST_DBL(0.f));
/* save nrg for the next frame */
h_ps_d->specificTo.mpeg.aPrevNrgBin[bin] = nrg;
nrg = fMult( nrg, TRANSIENT_IMPACT_FACTOR );
/* save transient impact factor */
if ( peakDiff <= nrg || peakDiff == FL2FXCONST_DBL(0.0) ) {
aaTransRatioSlot[bin] = (FIXP_DBL)MAXVAL_DBL /* FL2FXCONST_DBL(1.0f)*/;
}
else if ( nrg <= FL2FXCONST_DBL(0.0f) ) {
aaTransRatioSlot[bin] = FL2FXCONST_DBL(0.f);
}
else {
/* scale to denominator */
INT scale_left = fixMax(0, CntLeadingZeros(peakDiff) - 1);
aaTransRatioSlot[bin] = schur_div( nrg<<scale_left, peakDiff<<scale_left, 16);
}
} /* bin */
#define DELAY_GROUP_OFFSET 20
#define NR_OF_DELAY_GROUPS 2
FIXP_DBL rTmp, iTmp, rTmp0, iTmp0, rR0, iR0;
INT TempDelay = h_ps_d->specificTo.mpeg.delayBufIndex; /* set delay indices */
pRealDelayBuffer = h_ps_d->specificTo.mpeg.aaRealDelayBufferSubQmf[TempDelay];
pImagDelayBuffer = h_ps_d->specificTo.mpeg.aaImagDelayBufferSubQmf[TempDelay];
aaLeftReal = mHybridRealLeft;
aaLeftImag = mHybridImagLeft;
aaRightReal = mHybridRealRight;
aaRightImag = mHybridImagRight;
/************************/
/* ICC groups : 0 - 9 */
/************************/
/* gr = ICC groups */
for (gr=0; gr < SUBQMF_GROUPS; gr++) {
transRatio = aaTransRatioSlot[bins2groupMap20[gr]];
/* sb = subQMF/QMF subband */
sb = groupBorders20[gr];
/* Update delay buffers, sample delay allpass = 2 */
rTmp0 = pRealDelayBuffer[sb];
iTmp0 = pImagDelayBuffer[sb];
pRealDelayBuffer[sb] = aaLeftReal[sb];
pImagDelayBuffer[sb] = aaLeftImag[sb];
/* delay by fraction */
cplxMultDiv2(&rR0, &iR0, rTmp0, iTmp0, aaFractDelayPhaseFactorReSubQmf20[sb], aaFractDelayPhaseFactorImSubQmf20[sb]);
rR0<<=1;
iR0<<=1;
FIXP_DBL *pAaaRealDelayRBufferSerSubQmf = h_ps_d->specificTo.mpeg.aaaRealDelayRBufferSerSubQmf[sb];
FIXP_DBL *pAaaImagDelayRBufferSerSubQmf = h_ps_d->specificTo.mpeg.aaaImagDelayRBufferSerSubQmf[sb];
for (m=0; m<NO_SERIAL_ALLPASS_LINKS ; m++) {
INT tmpDelayRSer = h_ps_d->specificTo.mpeg.aDelayRBufIndexSer[m];
/* get delayed values from according buffer : m(0)=3; m(1)=4; m(2)=5; */
rTmp0 = pAaaRealDelayRBufferSerSubQmf[tmpDelayRSer];
iTmp0 = pAaaImagDelayRBufferSerSubQmf[tmpDelayRSer];
/* delay by fraction */
cplxMultDiv2(&rTmp, &iTmp, rTmp0, iTmp0, aaFractDelayPhaseFactorSerReSubQmf20[sb][m], aaFractDelayPhaseFactorSerImSubQmf20[sb][m]);
rTmp = (rTmp - fMultDiv2(aAllpassLinkDecaySer[m], rR0)) << 1;
iTmp = (iTmp - fMultDiv2(aAllpassLinkDecaySer[m], iR0)) << 1;
pAaaRealDelayRBufferSerSubQmf[tmpDelayRSer] = rR0 + fMult(aAllpassLinkDecaySer[m], rTmp);
pAaaImagDelayRBufferSerSubQmf[tmpDelayRSer] = iR0 + fMult(aAllpassLinkDecaySer[m], iTmp);
rR0 = rTmp;
iR0 = iTmp;
pAaaRealDelayRBufferSerSubQmf += aAllpassLinkDelaySer[m];
pAaaImagDelayRBufferSerSubQmf += aAllpassLinkDelaySer[m];
} /* m */
/* duck if a past transient is found */
aaRightReal[sb] = fMult(transRatio, rR0);
aaRightImag[sb] = fMult(transRatio, iR0);
} /* gr */
scaleValues( mHybridRealLeft, NO_SUB_QMF_CHANNELS, -SCAL_HEADROOM );
scaleValues( mHybridImagLeft, NO_SUB_QMF_CHANNELS, -SCAL_HEADROOM );
scaleValues( mHybridRealRight, NO_SUB_QMF_CHANNELS, -SCAL_HEADROOM );
scaleValues( mHybridImagRight, NO_SUB_QMF_CHANNELS, -SCAL_HEADROOM );
/************************/
aaLeftReal = rIntBufferLeft;
aaLeftImag = iIntBufferLeft;
aaRightReal = rIntBufferRight;
aaRightImag = iIntBufferRight;
pRealDelayBuffer = h_ps_d->specificTo.mpeg.aaRealDelayBufferQmf[TempDelay];
pImagDelayBuffer = h_ps_d->specificTo.mpeg.aaImagDelayBufferQmf[TempDelay];
/************************/
/* ICC groups : 10 - 19 */
/************************/
/* gr = ICC groups */
for (gr=SUBQMF_GROUPS; gr < NO_IID_GROUPS - NR_OF_DELAY_GROUPS; gr++) {
transRatio = aaTransRatioSlot[bins2groupMap20[gr]];
/* sb = subQMF/QMF subband */
for (sb = groupBorders20[gr]; sb < groupBorders20[gr+1]; sb++) {
FIXP_DBL resR, resI;
/* decayScaleFactor = 1.0f + decay_cutoff * DECAY_SLOPE - DECAY_SLOPE * sb; DECAY_SLOPE = 0.05 */
FIXP_DBL decayScaleFactor = decayScaleFactTable[sb];
/* Update delay buffers, sample delay allpass = 2 */
rTmp0 = pRealDelayBuffer[sb];
iTmp0 = pImagDelayBuffer[sb];
pRealDelayBuffer[sb] = aaLeftReal[sb];
pImagDelayBuffer[sb] = aaLeftImag[sb];
/* delay by fraction */
cplxMultDiv2(&rR0, &iR0, rTmp0, iTmp0, aaFractDelayPhaseFactorReQmf[sb], aaFractDelayPhaseFactorImQmf[sb]);
rR0<<=1;
iR0<<=1;
resR = fMult(decayScaleFactor, rR0);
resI = fMult(decayScaleFactor, iR0);
FIXP_DBL *pAaaRealDelayRBufferSerQmf = h_ps_d->specificTo.mpeg.aaaRealDelayRBufferSerQmf[sb];
FIXP_DBL *pAaaImagDelayRBufferSerQmf = h_ps_d->specificTo.mpeg.aaaImagDelayRBufferSerQmf[sb];
for (m=0; m<NO_SERIAL_ALLPASS_LINKS ; m++) {
INT tmpDelayRSer = h_ps_d->specificTo.mpeg.aDelayRBufIndexSer[m];
/* get delayed values from according buffer : m(0)=3; m(1)=4; m(2)=5; */
rTmp0 = pAaaRealDelayRBufferSerQmf[tmpDelayRSer];
iTmp0 = pAaaImagDelayRBufferSerQmf[tmpDelayRSer];
/* delay by fraction */
cplxMultDiv2(&rTmp, &iTmp, rTmp0, iTmp0, aaFractDelayPhaseFactorSerReQmf[sb][m], aaFractDelayPhaseFactorSerImQmf[sb][m]);
rTmp = (rTmp - fMultDiv2(aAllpassLinkDecaySer[m], resR))<<1;
iTmp = (iTmp - fMultDiv2(aAllpassLinkDecaySer[m], resI))<<1;
resR = fMult(decayScaleFactor, rTmp);
resI = fMult(decayScaleFactor, iTmp);
pAaaRealDelayRBufferSerQmf[tmpDelayRSer] = rR0 + fMult(aAllpassLinkDecaySer[m], resR);
pAaaImagDelayRBufferSerQmf[tmpDelayRSer] = iR0 + fMult(aAllpassLinkDecaySer[m], resI);
rR0 = rTmp;
iR0 = iTmp;
pAaaRealDelayRBufferSerQmf += aAllpassLinkDelaySer[m];
pAaaImagDelayRBufferSerQmf += aAllpassLinkDelaySer[m];
} /* m */
/* duck if a past transient is found */
aaRightReal[sb] = fMult(transRatio, rR0);
aaRightImag[sb] = fMult(transRatio, iR0);
} /* sb */
} /* gr */
/************************/
/* ICC groups : 20, 21 */
/************************/
/* gr = ICC groups */
for (gr=DELAY_GROUP_OFFSET; gr < NO_IID_GROUPS; gr++) {
INT sbStart = groupBorders20[gr];
INT sbStop = groupBorders20[gr+1];
UCHAR *pDelayBufIdx = &h_ps_d->specificTo.mpeg.aDelayBufIndexDelayQmf[sbStart-FIRST_DELAY_SB];
transRatio = aaTransRatioSlot[bins2groupMap20[gr]];
/* sb = subQMF/QMF subband */
for (sb = sbStart; sb < sbStop; sb++) {
/* Update delay buffers */
rR0 = h_ps_d->specificTo.mpeg.pAaRealDelayBufferQmf[*pDelayBufIdx][sb-FIRST_DELAY_SB];
iR0 = h_ps_d->specificTo.mpeg.pAaImagDelayBufferQmf[*pDelayBufIdx][sb-FIRST_DELAY_SB];
h_ps_d->specificTo.mpeg.pAaRealDelayBufferQmf[*pDelayBufIdx][sb-FIRST_DELAY_SB] = aaLeftReal[sb];
h_ps_d->specificTo.mpeg.pAaImagDelayBufferQmf[*pDelayBufIdx][sb-FIRST_DELAY_SB] = aaLeftImag[sb];
/* duck if a past transient is found */
aaRightReal[sb] = fMult(transRatio, rR0);
aaRightImag[sb] = fMult(transRatio, iR0);
if (++(*pDelayBufIdx) >= delayIndexQmf[sb]) {
*pDelayBufIdx = 0;
}
pDelayBufIdx++;
} /* sb */
} /* gr */
/* Update delay buffer index */
if (++h_ps_d->specificTo.mpeg.delayBufIndex >= NO_SAMPLE_DELAY_ALLPASS)
h_ps_d->specificTo.mpeg.delayBufIndex = 0;
for (m=0; m<NO_SERIAL_ALLPASS_LINKS ; m++) {
if (++h_ps_d->specificTo.mpeg.aDelayRBufIndexSer[m] >= aAllpassLinkDelaySer[m])
h_ps_d->specificTo.mpeg.aDelayRBufIndexSer[m] = 0;
}
scaleValues( &rIntBufferLeft[NO_QMF_BANDS_HYBRID20], NO_QMF_CHANNELS-NO_QMF_BANDS_HYBRID20, -SCAL_HEADROOM );
scaleValues( &iIntBufferLeft[NO_QMF_BANDS_HYBRID20], NO_QMF_CHANNELS-NO_QMF_BANDS_HYBRID20, -SCAL_HEADROOM );
scaleValues( &rIntBufferRight[NO_QMF_BANDS_HYBRID20], NO_QMF_CHANNELS-NO_QMF_BANDS_HYBRID20, -SCAL_HEADROOM );
scaleValues( &iIntBufferRight[NO_QMF_BANDS_HYBRID20], NO_QMF_CHANNELS-NO_QMF_BANDS_HYBRID20, -SCAL_HEADROOM );
/* free memory on scratch */
C_ALLOC_SCRATCH_END(aaTransRatioSlot, FIXP_DBL, NO_MID_RES_BINS);
C_ALLOC_SCRATCH_END(aaPowerSlot, FIXP_DBL, NO_MID_RES_BINS);
}
void initSlotBasedRotation( HANDLE_PS_DEC h_ps_d, /*!< pointer to the module state */
int env,
int usb
) {
INT group = 0;
INT bin = 0;
INT noIidSteps;
/* const UCHAR *pQuantizedIIDs;*/
FIXP_SGL invL;
FIXP_DBL ScaleL, ScaleR;
FIXP_DBL Alpha, Beta;
FIXP_DBL h11r, h12r, h21r, h22r;
const FIXP_DBL *PScaleFactors;
/* Overwrite old values in delay buffers when upper subband is higher than in last frame */
if (env == 0) {
if ((usb > h_ps_d->specificTo.mpeg.lastUsb) && h_ps_d->specificTo.mpeg.lastUsb) {
INT i,k,length;
for (i=h_ps_d->specificTo.mpeg.lastUsb ; i < FIRST_DELAY_SB; i++) {
FDKmemclear(h_ps_d->specificTo.mpeg.aaaRealDelayRBufferSerQmf[i], NO_DELAY_LENGTH_VECTORS*sizeof(FIXP_DBL));
FDKmemclear(h_ps_d->specificTo.mpeg.aaaImagDelayRBufferSerQmf[i], NO_DELAY_LENGTH_VECTORS*sizeof(FIXP_DBL));
}
for (k=0 ; k<NO_SAMPLE_DELAY_ALLPASS; k++) {
FDKmemclear(h_ps_d->specificTo.mpeg.pAaRealDelayBufferQmf[k], FIRST_DELAY_SB*sizeof(FIXP_DBL));
}
length = (usb-FIRST_DELAY_SB)*sizeof(FIXP_DBL);
if(length>0) {
FDKmemclear(h_ps_d->specificTo.mpeg.pAaRealDelayBufferQmf[0], length);
FDKmemclear(h_ps_d->specificTo.mpeg.pAaImagDelayBufferQmf[0], length);
}
length = (fixMin(NO_DELAY_BUFFER_BANDS,(INT)usb)-FIRST_DELAY_SB)*sizeof(FIXP_DBL);
if(length>0) {
for (k=1 ; k < h_ps_d->specificTo.mpeg.noSampleDelay; k++) {
FDKmemclear(h_ps_d->specificTo.mpeg.pAaRealDelayBufferQmf[k], length);
FDKmemclear(h_ps_d->specificTo.mpeg.pAaImagDelayBufferQmf[k], length);
}
}
}
h_ps_d->specificTo.mpeg.lastUsb = usb;
} /* env == 0 */
if (h_ps_d->bsData[h_ps_d->processSlot].mpeg.bFineIidQ)
{
PScaleFactors = ScaleFactorsFine; /* values are shiftet right by one */
noIidSteps = NO_IID_STEPS_FINE;
/*pQuantizedIIDs = quantizedIIDsFine;*/
}
else
{
PScaleFactors = ScaleFactors; /* values are shiftet right by one */
noIidSteps = NO_IID_STEPS;
/*pQuantizedIIDs = quantizedIIDs;*/
}
/* dequantize and decode */
for ( group = 0; group < NO_IID_GROUPS; group++ ) {
bin = bins2groupMap20[group];
/*!
<h3> type 'A' rotation </h3>
mixing procedure R_a, used in baseline version<br>
Scale-factor vectors c1 and c2 are precalculated in initPsTables () and stored in
scaleFactors[] and scaleFactorsFine[] = pScaleFactors [].
From the linearized IID parameters (intensity differences), two scale factors are
calculated. They are used to obtain the coefficients h11... h22.
*/
/* ScaleR and ScaleL are scaled by 1 shift right */
ScaleR = PScaleFactors[noIidSteps + h_ps_d->specificTo.mpeg.coef.aaIidIndexMapped[env][bin]];
ScaleL = PScaleFactors[noIidSteps - h_ps_d->specificTo.mpeg.coef.aaIidIndexMapped[env][bin]];
Beta = fMult (fMult( Alphas[h_ps_d->specificTo.mpeg.coef.aaIccIndexMapped[env][bin]], ( ScaleR - ScaleL )), FIXP_SQRT05);
Alpha = Alphas[h_ps_d->specificTo.mpeg.coef.aaIccIndexMapped[env][bin]]>>1;
/* Alpha and Beta are now both scaled by 2 shifts right */
/* calculate the coefficients h11... h22 from scale-factors and ICC parameters */
/* h values are scaled by 1 shift right */
{
FIXP_DBL trigData[4];
inline_fixp_cos_sin(Beta + Alpha, Beta - Alpha, 2, trigData);
h11r = fMult( ScaleL, trigData[0]);
h12r = fMult( ScaleR, trigData[2]);
h21r = fMult( ScaleL, trigData[1]);
h22r = fMult( ScaleR, trigData[3]);
}
/*****************************************************************************************/
/* Interpolation of the matrices H11... H22: */
/* */
/* H11(k,n) = H11(k,n[e]) + (n-n[e]) * (H11(k,n[e+1] - H11(k,n[e])) / (n[e+1] - n[e]) */
/* ... */
/*****************************************************************************************/
/* invL = 1/(length of envelope) */
invL = FX_DBL2FX_SGL(GetInvInt(h_ps_d->bsData[h_ps_d->processSlot].mpeg.aEnvStartStop[env + 1] - h_ps_d->bsData[h_ps_d->processSlot].mpeg.aEnvStartStop[env]));
h_ps_d->specificTo.mpeg.coef.H11r[group] = h_ps_d->specificTo.mpeg.h11rPrev[group];
h_ps_d->specificTo.mpeg.coef.H12r[group] = h_ps_d->specificTo.mpeg.h12rPrev[group];
h_ps_d->specificTo.mpeg.coef.H21r[group] = h_ps_d->specificTo.mpeg.h21rPrev[group];
h_ps_d->specificTo.mpeg.coef.H22r[group] = h_ps_d->specificTo.mpeg.h22rPrev[group];
h_ps_d->specificTo.mpeg.coef.DeltaH11r[group] = fMult ( h11r - h_ps_d->specificTo.mpeg.coef.H11r[group], invL );
h_ps_d->specificTo.mpeg.coef.DeltaH12r[group] = fMult ( h12r - h_ps_d->specificTo.mpeg.coef.H12r[group], invL );
h_ps_d->specificTo.mpeg.coef.DeltaH21r[group] = fMult ( h21r - h_ps_d->specificTo.mpeg.coef.H21r[group], invL );
h_ps_d->specificTo.mpeg.coef.DeltaH22r[group] = fMult ( h22r - h_ps_d->specificTo.mpeg.coef.H22r[group], invL );
/* update prev coefficients for interpolation in next envelope */
h_ps_d->specificTo.mpeg.h11rPrev[group] = h11r;
h_ps_d->specificTo.mpeg.h12rPrev[group] = h12r;
h_ps_d->specificTo.mpeg.h21rPrev[group] = h21r;
h_ps_d->specificTo.mpeg.h22rPrev[group] = h22r;
} /* group loop */
}
static void applySlotBasedRotation( HANDLE_PS_DEC h_ps_d, /*!< pointer to the module state */
FIXP_DBL *mHybridRealLeft, /*!< hybrid values real left */
FIXP_DBL *mHybridImagLeft, /*!< hybrid values imag left */
FIXP_DBL *QmfLeftReal, /*!< real bands left qmf channel */
FIXP_DBL *QmfLeftImag, /*!< imag bands left qmf channel */
FIXP_DBL *mHybridRealRight, /*!< hybrid values real right */
FIXP_DBL *mHybridImagRight, /*!< hybrid values imag right */
FIXP_DBL *QmfRightReal, /*!< real bands right qmf channel */
FIXP_DBL *QmfRightImag /*!< imag bands right qmf channel */
)
{
INT group;
INT subband;
FIXP_DBL *RESTRICT HybrLeftReal;
FIXP_DBL *RESTRICT HybrLeftImag;
FIXP_DBL *RESTRICT HybrRightReal;
FIXP_DBL *RESTRICT HybrRightImag;
FIXP_DBL tmpLeft, tmpRight;
/**********************************************************************************************/
/*!
<h2> Mapping </h2>
The number of stereo bands that is actually used depends on the number of availble
parameters for IID and ICC:
<pre>
nr. of IID para.| nr. of ICC para. | nr. of Stereo bands
----------------|------------------|-------------------
10,20 | 10,20 | 20
10,20 | 34 | 34
34 | 10,20 | 34
34 | 34 | 34
</pre>
In the case the number of parameters for IIS and ICC differs from the number of stereo
bands, a mapping from the lower number to the higher number of parameters is applied.
Index mapping of IID and ICC parameters is already done in psbitdec.cpp. Further mapping is
not needed here in baseline version.
**********************************************************************************************/
/************************************************************************************************/
/*!
<h2> Mixing </h2>
To generate the QMF subband signals for the subband samples n = n[e]+1 ,,, n_[e+1] the
parameters at position n[e] and n[e+1] are required as well as the subband domain signals
s_k(n) and d_k(n) for n = n[e]+1... n_[e+1]. n[e] represents the start position for
envelope e. The border positions n[e] are handled in DecodePS().
The stereo sub subband signals are constructed as:
<pre>
l_k(n) = H11(k,n) s_k(n) + H21(k,n) d_k(n)
r_k(n) = H21(k,n) s_k(n) + H22(k,n) d_k(n)
</pre>
In order to obtain the matrices H11(k,n)... H22 (k,n), the vectors h11(b)... h22(b) need to
be calculated first (b: parameter index). Depending on ICC mode either mixing procedure R_a
or R_b is used for that. For both procedures, the parameters for parameter position n[e+1]
is used.
************************************************************************************************/
/************************************************************************************************/
/*!
<h2>Phase parameters </h2>
With disabled phase parameters (which is the case in baseline version), the H-matrices are
just calculated by:
<pre>
H11(k,n[e+1] = h11(b(k))
(...)
b(k): parameter index according to mapping table
</pre>
<h2>Processing of the samples in the sub subbands </h2>
this loop includes the interpolation of the coefficients Hxx
************************************************************************************************/
/* loop thru all groups ... */
HybrLeftReal = mHybridRealLeft;
HybrLeftImag = mHybridImagLeft;
HybrRightReal = mHybridRealRight;
HybrRightImag = mHybridImagRight;
/******************************************************/
/* construct stereo sub subband signals according to: */
/* */
/* l_k(n) = H11(k,n) s_k(n) + H21(k,n) d_k(n) */
/* r_k(n) = H12(k,n) s_k(n) + H22(k,n) d_k(n) */
/******************************************************/
for ( group = 0; group < SUBQMF_GROUPS; group++ ) {
h_ps_d->specificTo.mpeg.coef.H11r[group] += h_ps_d->specificTo.mpeg.coef.DeltaH11r[group];
h_ps_d->specificTo.mpeg.coef.H12r[group] += h_ps_d->specificTo.mpeg.coef.DeltaH12r[group];
h_ps_d->specificTo.mpeg.coef.H21r[group] += h_ps_d->specificTo.mpeg.coef.DeltaH21r[group];
h_ps_d->specificTo.mpeg.coef.H22r[group] += h_ps_d->specificTo.mpeg.coef.DeltaH22r[group];
subband = groupBorders20[group];
tmpLeft = fMultAddDiv2( fMultDiv2(h_ps_d->specificTo.mpeg.coef.H11r[group], HybrLeftReal[subband]), h_ps_d->specificTo.mpeg.coef.H21r[group], HybrRightReal[subband]);
tmpRight = fMultAddDiv2( fMultDiv2(h_ps_d->specificTo.mpeg.coef.H12r[group], HybrLeftReal[subband]), h_ps_d->specificTo.mpeg.coef.H22r[group], HybrRightReal[subband]);
HybrLeftReal [subband] = tmpLeft<<1;
HybrRightReal[subband] = tmpRight<<1;
tmpLeft = fMultAdd( fMultDiv2(h_ps_d->specificTo.mpeg.coef.H11r[group], HybrLeftImag[subband]), h_ps_d->specificTo.mpeg.coef.H21r[group], HybrRightImag[subband]);
tmpRight = fMultAdd( fMultDiv2(h_ps_d->specificTo.mpeg.coef.H12r[group], HybrLeftImag[subband]), h_ps_d->specificTo.mpeg.coef.H22r[group], HybrRightImag[subband]);
HybrLeftImag [subband] = tmpLeft;
HybrRightImag[subband] = tmpRight;
}
/* continue in the qmf buffers */
HybrLeftReal = QmfLeftReal;
HybrLeftImag = QmfLeftImag;
HybrRightReal = QmfRightReal;
HybrRightImag = QmfRightImag;
for (; group < NO_IID_GROUPS; group++ ) {
h_ps_d->specificTo.mpeg.coef.H11r[group] += h_ps_d->specificTo.mpeg.coef.DeltaH11r[group];
h_ps_d->specificTo.mpeg.coef.H12r[group] += h_ps_d->specificTo.mpeg.coef.DeltaH12r[group];
h_ps_d->specificTo.mpeg.coef.H21r[group] += h_ps_d->specificTo.mpeg.coef.DeltaH21r[group];
h_ps_d->specificTo.mpeg.coef.H22r[group] += h_ps_d->specificTo.mpeg.coef.DeltaH22r[group];
for ( subband = groupBorders20[group]; subband < groupBorders20[group + 1]; subband++ )
{
tmpLeft = fMultAdd( fMultDiv2(h_ps_d->specificTo.mpeg.coef.H11r[group], HybrLeftReal[subband]), h_ps_d->specificTo.mpeg.coef.H21r[group], HybrRightReal[subband]);
tmpRight = fMultAdd( fMultDiv2(h_ps_d->specificTo.mpeg.coef.H12r[group], HybrLeftReal[subband]), h_ps_d->specificTo.mpeg.coef.H22r[group], HybrRightReal[subband]);
HybrLeftReal [subband] = tmpLeft;
HybrRightReal[subband] = tmpRight;
tmpLeft = fMultAdd( fMultDiv2(h_ps_d->specificTo.mpeg.coef.H11r[group], HybrLeftImag[subband]), h_ps_d->specificTo.mpeg.coef.H21r[group], HybrRightImag[subband]);
tmpRight = fMultAdd( fMultDiv2(h_ps_d->specificTo.mpeg.coef.H12r[group], HybrLeftImag[subband]), h_ps_d->specificTo.mpeg.coef.H22r[group], HybrRightImag[subband]);
HybrLeftImag [subband] = tmpLeft;
HybrRightImag[subband] = tmpRight;
} /* subband */
}
}
/***************************************************************************/
/*!
\brief Applies IID, ICC, IPD and OPD parameters to the current frame.
\return none
****************************************************************************/
void
ApplyPsSlot( HANDLE_PS_DEC h_ps_d, /*!< handle PS_DEC*/
FIXP_DBL **rIntBufferLeft, /*!< real bands left qmf channel (38x64) */
FIXP_DBL **iIntBufferLeft, /*!< imag bands left qmf channel (38x64) */
FIXP_DBL *rIntBufferRight, /*!< real bands right qmf channel (38x64) */
FIXP_DBL *iIntBufferRight /*!< imag bands right qmf channel (38x64) */
)
{
/*!
The 64-band QMF representation of the monaural signal generated by the SBR tool
is used as input of the PS tool. After the PS processing, the outputs of the left
and right hybrid synthesis filterbanks are used to generate the stereo output
signal.
<pre>
------------- ---------- -------------
| Hybrid | M_n[k,m] | | L_n[k,m] | Hybrid | l[n]
m[n] --->| analysis |--------->| |--------->| synthesis |----->
| filter bank | | | | filter bank |
------------- | Stereo | -------------
| | recon- |
| | stuction |
\|/ | |
------------- | |
| De- | D_n[k,m] | |
| correlation |--------->| |
------------- | | -------------
| | R_n[k,m] | Hybrid | r[n]
| |--------->| synthesis |----->
IID, ICC ------------------------>| | | filter bank |
(IPD, OPD) ---------- -------------
m[n]: QMF represantation of the mono input
M_n[k,m]: (sub-)sub-band domain signals of the mono input
D_n[k,m]: decorrelated (sub-)sub-band domain signals
L_n[k,m]: (sub-)sub-band domain signals of the left output
R_n[k,m]: (sub-)sub-band domain signals of the right output
l[n],r[n]: left/right output signals
</pre>
*/
/* get temporary hybrid qmf values of one timeslot */
C_ALLOC_SCRATCH_START(hybridRealLeft, FIXP_DBL, NO_SUB_QMF_CHANNELS);
C_ALLOC_SCRATCH_START(hybridImagLeft, FIXP_DBL, NO_SUB_QMF_CHANNELS);
C_ALLOC_SCRATCH_START(hybridRealRight, FIXP_DBL, NO_SUB_QMF_CHANNELS);
C_ALLOC_SCRATCH_START(hybridImagRight, FIXP_DBL, NO_SUB_QMF_CHANNELS);
SCHAR sf_IntBuffer = h_ps_d->sf_IntBuffer;
/* clear workbuffer */
FDKmemclear(hybridRealLeft, NO_SUB_QMF_CHANNELS*sizeof(FIXP_DBL));
FDKmemclear(hybridImagLeft, NO_SUB_QMF_CHANNELS*sizeof(FIXP_DBL));
FDKmemclear(hybridRealRight, NO_SUB_QMF_CHANNELS*sizeof(FIXP_DBL));
FDKmemclear(hybridImagRight, NO_SUB_QMF_CHANNELS*sizeof(FIXP_DBL));
/*!
Hybrid analysis filterbank:
The lower 3 (5) of the 64 QMF subbands are further split to provide better frequency resolution.
for PS processing.
For the 10 and 20 stereo bands configuration, the QMF band H_0(w) is split
up into 8 (sub-) sub-bands and the QMF bands H_1(w) and H_2(w) are spit into 2 (sub-)
4th. (See figures 8.20 and 8.22 of ISO/IEC 14496-3:2001/FDAM 2:2004(E) )
*/
if (h_ps_d->procFrameBased == 1) /* If we have switched from frame to slot based processing */
{ /* fill hybrid delay buffer. */
h_ps_d->procFrameBased = 0;
fillHybridDelayLine( rIntBufferLeft,
iIntBufferLeft,
hybridRealLeft,
hybridImagLeft,
hybridRealRight,
hybridImagRight,
&h_ps_d->specificTo.mpeg.hybrid );
}
slotBasedHybridAnalysis ( rIntBufferLeft[HYBRID_FILTER_DELAY], /* qmf filterbank values */
iIntBufferLeft[HYBRID_FILTER_DELAY], /* qmf filterbank values */
hybridRealLeft, /* hybrid filterbank values */
hybridImagLeft, /* hybrid filterbank values */
&h_ps_d->specificTo.mpeg.hybrid); /* hybrid filterbank handle */
SCHAR hybridScal = h_ps_d->specificTo.mpeg.hybrid.sf_mQmfBuffer;
/*!
Decorrelation:
By means of all-pass filtering and delaying, the (sub-)sub-band samples s_k(n) are
converted into de-correlated (sub-)sub-band samples d_k(n).
- k: frequency in hybrid spectrum
- n: time index
*/
deCorrelateSlotBased( h_ps_d, /* parametric stereo decoder handle */
hybridRealLeft, /* left hybrid time slot */
hybridImagLeft,
hybridScal, /* scale factor of left hybrid time slot */
rIntBufferLeft[0], /* left qmf time slot */
iIntBufferLeft[0],
sf_IntBuffer, /* scale factor of left and right qmf time slot */
hybridRealRight, /* right hybrid time slot */
hybridImagRight,
rIntBufferRight, /* right qmf time slot */
iIntBufferRight );
/*!
Stereo Processing:
The sets of (sub-)sub-band samples s_k(n) and d_k(n) are processed according to
the stereo cues which are defined per stereo band.
*/
applySlotBasedRotation( h_ps_d, /* parametric stereo decoder handle */
hybridRealLeft, /* left hybrid time slot */
hybridImagLeft,
rIntBufferLeft[0], /* left qmf time slot */
iIntBufferLeft[0],
hybridRealRight, /* right hybrid time slot */
hybridImagRight,
rIntBufferRight, /* right qmf time slot */
iIntBufferRight );
/*!
Hybrid synthesis filterbank:
The stereo processed hybrid subband signals l_k(n) and r_k(n) are fed into the hybrid synthesis
filterbanks which are identical to the 64 complex synthesis filterbank of the SBR tool. The
input to the filterbank are slots of 64 QMF samples. For each slot the filterbank outputs one
block of 64 samples of one reconstructed stereo channel. The hybrid synthesis filterbank is
computed seperatly for the left and right channel.
*/
/* left channel */
slotBasedHybridSynthesis ( hybridRealLeft, /* one timeslot of hybrid filterbank values */
hybridImagLeft,
rIntBufferLeft[0], /* one timeslot of qmf filterbank values */
iIntBufferLeft[0],
&h_ps_d->specificTo.mpeg.hybrid ); /* hybrid filterbank handle */
/* right channel */
slotBasedHybridSynthesis ( hybridRealRight, /* one timeslot of hybrid filterbank values */
hybridImagRight,
rIntBufferRight, /* one timeslot of qmf filterbank values */
iIntBufferRight,
&h_ps_d->specificTo.mpeg.hybrid ); /* hybrid filterbank handle */
/* free temporary hybrid qmf values of one timeslot */
C_ALLOC_SCRATCH_END(hybridImagRight, FIXP_DBL, NO_SUB_QMF_CHANNELS);
C_ALLOC_SCRATCH_END(hybridRealRight, FIXP_DBL, NO_SUB_QMF_CHANNELS);
C_ALLOC_SCRATCH_END(hybridImagLeft, FIXP_DBL, NO_SUB_QMF_CHANNELS);
C_ALLOC_SCRATCH_END(hybridRealLeft, FIXP_DBL, NO_SUB_QMF_CHANNELS);
}/* END ApplyPsSlot */
/***************************************************************************/
/*!
\brief assigns timeslots to an array
\return
****************************************************************************/
static void assignTimeSlotsPS (FIXP_DBL *bufAdr,
FIXP_DBL **bufPtr,
const int numSlots,
const int numChan)
{
FIXP_DBL *ptr;
int slot;
ptr = bufAdr;
for(slot=0; slot < numSlots; slot++) {
bufPtr [slot] = ptr;
ptr += numChan;
}
}
|