1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
|
/*************************** Fraunhofer IIS FDK Tools **********************
(C) Copyright Fraunhofer IIS (2011)
All Rights Reserved
Please be advised that this software and/or program delivery is
Confidential Information of Fraunhofer and subject to and covered by the
Fraunhofer IIS Software Evaluation Agreement
between Google Inc. and Fraunhofer
effective and in full force since March 1, 2012.
You may use this software and/or program only under the terms and
conditions described in the above mentioned Fraunhofer IIS Software
Evaluation Agreement. Any other and/or further use requires a separate agreement.
$Id$
Author(s): Josef Hoepfl, Manuel Jander
Description: MDCT routines
This software and/or program is protected by copyright law and international
treaties. Any reproduction or distribution of this software and/or program,
or any portion of it, may result in severe civil and criminal penalties, and
will be prosecuted to the maximum extent possible under law.
******************************************************************************/
#include "mdct.h"
#include "FDK_tools_rom.h"
#include "dct.h"
#include "fixpoint_math.h"
#define OPT_OVERLAP_ADD
void mdct_init( H_MDCT hMdct,
FIXP_DBL *overlap,
INT overlapBufferSize )
{
hMdct->overlap.freq = overlap;
//FDKmemclear(overlap, overlapBufferSize*sizeof(FIXP_DBL));
hMdct->prev_fr = 0;
hMdct->prev_nr = 0;
hMdct->prev_tl = 0;
hMdct->ov_size = overlapBufferSize;
}
INT mdct( H_MDCT hMdct,
FIXP_DBL *spectrum,
INT *scalefactor,
INT_PCM *input,
INT tl,
INT nr,
INT fr,
const FIXP_WTP *wrs )
{
/* Fold and windowing */
/* DCT IV */
// dct_IV();
return tl;
}
void imdct_gain(FIXP_DBL *pGain_m, int *pGain_e, int tl)
{
FIXP_DBL gain_m = *pGain_m;
int gain_e = *pGain_e;
int log2_tl;
log2_tl = DFRACT_BITS-1-fNormz((FIXP_DBL)tl);
gain_e += -MDCT_OUTPUT_GAIN - log2_tl - MDCT_OUT_HEADROOM + 1;
/* Detect non-radix 2 transform length and add amplitude compensation factor
which cannot be included into the exponent above */
switch ( (tl) >> (log2_tl - 2) ) {
case 0x7: /* 10 ms, 1/tl = 1.0/(FDKpow(2.0, -log2_tl) * 0.53333333333333333333) */
if (gain_m == (FIXP_DBL)0) {
gain_m = FL2FXCONST_DBL(0.53333333333333333333f);
} else {
gain_m = fMult(gain_m, FL2FXCONST_DBL(0.53333333333333333333f));
}
break;
case 0x6: /* 3/4 of radix 2, 1/tl = 1.0/(FDKpow(2.0, -log2_tl) * 2.0/3.0) */
if (gain_m == (FIXP_DBL)0) {
gain_m = FL2FXCONST_DBL(2.0/3.0f);
} else {
gain_m = fMult(gain_m, FL2FXCONST_DBL(2.0/3.0f));
}
break;
case 0x4:
/* radix 2, nothing to do. */
break;
default:
/* unsupported */
FDK_ASSERT(0);
break;
}
*pGain_m = gain_m;
*pGain_e = gain_e;
}
INT imdct_drain(
H_MDCT hMdct,
FIXP_DBL *output,
INT nrSamplesRoom
)
{
int buffered_samples = 0;
if (nrSamplesRoom > 0) {
buffered_samples = hMdct->ov_offset;
FDK_ASSERT(buffered_samples <= nrSamplesRoom);
if (buffered_samples > 0) {
FDKmemcpy(output, hMdct->overlap.time, buffered_samples*sizeof(FIXP_DBL));
hMdct->ov_offset = 0;
}
}
return buffered_samples;
}
INT imdct_copy_ov_and_nr(
H_MDCT hMdct,
FIXP_DBL * pTimeData,
INT nrSamples
)
{
FIXP_DBL *pOvl;
int nt, nf, i;
nt = fMin(hMdct->ov_offset, nrSamples);
nrSamples -= nt;
nf = fMin(hMdct->prev_nr, nrSamples);
nrSamples -= nf;
FDKmemcpy(pTimeData, hMdct->overlap.time, nt*sizeof(FIXP_DBL));
pTimeData += nt;
pOvl = hMdct->overlap.freq + hMdct->ov_size - 1;
for (i=0; i<nf; i++) {
FIXP_DBL x = - (*pOvl--);
*pTimeData = IMDCT_SCALE_DBL(x);
pTimeData ++;
}
return (nt+nf);
}
void imdct_adapt_parameters(H_MDCT hMdct, int *pfl, int *pnl, int tl, const FIXP_WTP *wls, int noOutSamples)
{
int fl = *pfl, nl = *pnl;
int window_diff, use_current = 0, use_previous = 0;
if (hMdct->prev_tl == 0) {
hMdct->prev_wrs = wls;
hMdct->prev_fr = fl;
hMdct->prev_nr = (noOutSamples-fl)>>1;
hMdct->prev_tl = noOutSamples;
hMdct->ov_offset = 0;
use_current = 1;
}
window_diff = (hMdct->prev_fr - fl)>>1;
/* check if the previous window slope can be adjusted to match the current window slope */
if (hMdct->prev_nr + window_diff > 0) {
use_current = 1;
}
/* check if the current window slope can be adjusted to match the previous window slope */
if (nl - window_diff > 0 ) {
use_previous = 1;
}
/* if both is possible choose the larger of both window slope lengths */
if (use_current && use_previous) {
if (fl < hMdct->prev_fr) {
use_current = 0;
} else {
use_previous = 0;
}
}
/*
* If the previous transform block is big enough, enlarge previous window overlap,
* if not, then shrink current window overlap.
*/
if (use_current) {
hMdct->prev_nr += window_diff;
hMdct->prev_fr = fl;
hMdct->prev_wrs = wls;
} else {
nl -= window_diff;
fl = hMdct->prev_fr;
}
*pfl = fl;
*pnl = nl;
}
INT imdct_block(
H_MDCT hMdct,
FIXP_DBL *output,
FIXP_DBL *spectrum,
const SHORT scalefactor[],
const INT nSpec,
const INT noOutSamples,
const INT tl,
const FIXP_WTP *wls,
INT fl,
const FIXP_WTP *wrs,
const INT fr,
FIXP_DBL gain
)
{
FIXP_DBL *pOvl;
FIXP_DBL *pOut0 = output, *pOut1;
INT nl, nr;
int w, i, nrSamples = 0, specShiftScale, transform_gain_e = 0;
/* Derive NR and NL */
nr = (tl - fr)>>1;
nl = (tl - fl)>>1;
/* Include 2/N IMDCT gain into gain factor and exponent. */
imdct_gain(&gain, &transform_gain_e, tl);
/* Detect FRprevious / FL mismatches and override parameters accordingly */
if (hMdct->prev_fr != fl) {
imdct_adapt_parameters(hMdct, &fl, &nl, tl, wls, noOutSamples);
}
pOvl = hMdct->overlap.freq + hMdct->ov_size - 1;
if ( noOutSamples > nrSamples ) {
/* Purge buffered output. */
for (i=0; i<hMdct->ov_offset; i++) {
*pOut0 = hMdct->overlap.time[i];
pOut0 ++;
}
nrSamples = hMdct->ov_offset;
hMdct->ov_offset = 0;
}
for (w=0; w<nSpec; w++)
{
FIXP_DBL *pSpec, *pCurr;
const FIXP_WTP *pWindow;
specShiftScale = transform_gain_e;
/* Setup window pointers */
pWindow = hMdct->prev_wrs;
/* Current spectrum */
pSpec = spectrum+w*tl;
/* DCT IV of current spectrum. */
dct_IV(pSpec, tl, &specShiftScale);
/* Optional scaling of time domain - no yet windowed - of current spectrum */
/* and de-scale current spectrum signal (time domain, no yet windowed) */
if (gain != (FIXP_DBL)0) {
scaleValuesWithFactor(pSpec, gain, tl, scalefactor[w] + specShiftScale);
} else {
scaleValues(pSpec, tl, scalefactor[w] + specShiftScale);
}
if ( noOutSamples <= nrSamples ) {
/* Divert output first half to overlap buffer if we already got enough output samples. */
pOut0 = hMdct->overlap.time + hMdct->ov_offset;
hMdct->ov_offset += hMdct->prev_nr + fl/2;
} else {
/* Account output samples */
nrSamples += hMdct->prev_nr + fl/2;
}
/* NR output samples 0 .. NR. -overlap[TL/2..TL/2-NR] */
for (i=0; i<hMdct->prev_nr; i++) {
FIXP_DBL x = - (*pOvl--);
*pOut0 = IMDCT_SCALE_DBL(x);
pOut0 ++;
}
if ( noOutSamples <= nrSamples ) {
/* Divert output second half to overlap buffer if we already got enough output samples. */
pOut1 = hMdct->overlap.time + hMdct->ov_offset + fl/2 - 1;
hMdct->ov_offset += fl/2 + nl;
} else {
pOut1 = pOut0 + (fl - 1);
nrSamples += fl/2 + nl;
}
/* output samples before window crossing point NR .. TL/2. -overlap[TL/2-NR..TL/2-NR-FL/2] + current[NR..TL/2] */
/* output samples after window crossing point TL/2 .. TL/2+FL/2. -overlap[0..FL/2] - current[TL/2..FL/2] */
pCurr = pSpec + tl - fl/2;
for (i=0; i<fl/2; i++) {
FIXP_DBL x0, x1;
cplxMult(&x1, &x0, *pCurr++, - *pOvl--, pWindow[i]);
*pOut0 = IMDCT_SCALE_DBL(x0);
*pOut1 = IMDCT_SCALE_DBL(-x1);
pOut0 ++;
pOut1 --;
}
pOut0 += (fl/2);
/* NL output samples TL/2+FL/2..TL. - current[FL/2..0] */
pOut1 += (fl/2) + 1;
pCurr = pSpec + tl - fl/2 - 1;
for (i=0; i<nl; i++) {
FIXP_DBL x = - (*pCurr--);
*pOut1 = IMDCT_SCALE_DBL(x);
pOut1 ++;
}
/* Set overlap source pointer for next window pOvl = pSpec + tl/2 - 1; */
pOvl = pSpec + tl/2 - 1;
/* Previous window values. */
hMdct->prev_nr = nr;
hMdct->prev_fr = fr;
hMdct->prev_tl = tl;
hMdct->prev_wrs = wrs;
}
/* Save overlap */
pOvl = hMdct->overlap.freq + hMdct->ov_size - tl/2;
FDK_ASSERT(pOvl >= hMdct->overlap.time + hMdct->ov_offset);
FDK_ASSERT(tl/2 <= hMdct->ov_size);
for (i=0; i<tl/2; i++) {
pOvl[i] = spectrum[i+(nSpec-1)*tl];
}
return nrSamples;
}
|