1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
|
/* -----------------------------------------------------------------------------------------------------------
Software License for The Fraunhofer FDK AAC Codec Library for Android
� Copyright 1995 - 2012 Fraunhofer-Gesellschaft zur F�rderung der angewandten Forschung e.V.
All rights reserved.
1. INTRODUCTION
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements
the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio.
This FDK AAC Codec software is intended to be used on a wide variety of Android devices.
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual
audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by
independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part
of the MPEG specifications.
Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer)
may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners
individually for the purpose of encoding or decoding bit streams in products that are compliant with
the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license
these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec
software may already be covered under those patent licenses when it is used for those licensed purposes only.
Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality,
are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional
applications information and documentation.
2. COPYRIGHT LICENSE
Redistribution and use in source and binary forms, with or without modification, are permitted without
payment of copyright license fees provided that you satisfy the following conditions:
You must retain the complete text of this software license in redistributions of the FDK AAC Codec or
your modifications thereto in source code form.
You must retain the complete text of this software license in the documentation and/or other materials
provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form.
You must make available free of charge copies of the complete source code of the FDK AAC Codec and your
modifications thereto to recipients of copies in binary form.
The name of Fraunhofer may not be used to endorse or promote products derived from this library without
prior written permission.
You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec
software or your modifications thereto.
Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software
and the date of any change. For modified versions of the FDK AAC Codec, the term
"Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term
"Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android."
3. NO PATENT LICENSE
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer,
ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with
respect to this software.
You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized
by appropriate patent licenses.
4. DISCLAIMER
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors
"AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties
of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages,
including but not limited to procurement of substitute goods or services; loss of use, data, or profits,
or business interruption, however caused and on any theory of liability, whether in contract, strict
liability, or tort (including negligence), arising in any way out of the use of this software, even if
advised of the possibility of such damage.
5. CONTACT INFORMATION
Fraunhofer Institute for Integrated Circuits IIS
Attention: Audio and Multimedia Departments - FDK AAC LL
Am Wolfsmantel 33
91058 Erlangen, Germany
www.iis.fraunhofer.de/amm
amm-info@iis.fraunhofer.de
----------------------------------------------------------------------------------------------------------- */
/*************************** Fraunhofer IIS FDK Tools **********************
Author(s): M. Gayer
Description: Fixed point specific mathematical functions
******************************************************************************/
#include "fixpoint_math.h"
#define MAX_LD_PRECISION 10
#define LD_PRECISION 10
/* Taylor series coeffcients for ln(1-x), centered at 0 (MacLaurin polinomial). */
#ifndef LDCOEFF_16BIT
LNK_SECTION_CONSTDATA_L1
static const FIXP_DBL ldCoeff[MAX_LD_PRECISION] = {
FL2FXCONST_DBL(-1.0),
FL2FXCONST_DBL(-1.0/2.0),
FL2FXCONST_DBL(-1.0/3.0),
FL2FXCONST_DBL(-1.0/4.0),
FL2FXCONST_DBL(-1.0/5.0),
FL2FXCONST_DBL(-1.0/6.0),
FL2FXCONST_DBL(-1.0/7.0),
FL2FXCONST_DBL(-1.0/8.0),
FL2FXCONST_DBL(-1.0/9.0),
FL2FXCONST_DBL(-1.0/10.0)
};
#else
LNK_SECTION_CONSTDATA_L1
static const FIXP_SGL ldCoeff[MAX_LD_PRECISION] = {
FL2FXCONST_SGL(-1.0),
FL2FXCONST_SGL(-1.0/2.0),
FL2FXCONST_SGL(-1.0/3.0),
FL2FXCONST_SGL(-1.0/4.0),
FL2FXCONST_SGL(-1.0/5.0),
FL2FXCONST_SGL(-1.0/6.0),
FL2FXCONST_SGL(-1.0/7.0),
FL2FXCONST_SGL(-1.0/8.0),
FL2FXCONST_SGL(-1.0/9.0),
FL2FXCONST_SGL(-1.0/10.0)
};
#endif
/*****************************************************************************
functionname: CalcLdData
description: Delivers the Logarithm Dualis ld(op)/LD_DATA_SCALING with polynomial approximation.
input: Input op is assumed to be double precision fractional 0 < op < 1.0
This function does not accept negative values.
output: For op == 0, the result is saturated to -1.0
This function does not return positive values since input values are treated as fractional values.
It does not make sense to input an integer value into this function (and expect a positive output value)
since input values are treated as fractional values.
*****************************************************************************/
LNK_SECTION_CODE_L1
FIXP_DBL CalcLdData(FIXP_DBL op)
{
return fLog2(op, 0);
}
/*****************************************************************************
functionname: LdDataVector
*****************************************************************************/
LNK_SECTION_CODE_L1
void LdDataVector( FIXP_DBL *srcVector,
FIXP_DBL *destVector,
INT n)
{
INT i;
for ( i=0; i<n; i++) {
destVector[i] = CalcLdData(srcVector[i]);
}
}
#define MAX_POW2_PRECISION 8
#ifndef SINETABLE_16BIT
#define POW2_PRECISION MAX_POW2_PRECISION
#else
#define POW2_PRECISION 5
#endif
/*
Taylor series coefficients of the function x^2. The first coefficient is
ommited (equal to 1.0).
pow2Coeff[i-1] = (1/i!) d^i(2^x)/dx^i, i=1..MAX_POW2_PRECISION
To evaluate the taylor series around x = 0, the coefficients are: 1/!i * ln(2)^i
*/
#ifndef POW2COEFF_16BIT
LNK_SECTION_CONSTDATA_L1
static const FIXP_DBL pow2Coeff[MAX_POW2_PRECISION] = {
FL2FXCONST_DBL(0.693147180559945309417232121458177), /* ln(2)^1 /1! */
FL2FXCONST_DBL(0.240226506959100712333551263163332), /* ln(2)^2 /2! */
FL2FXCONST_DBL(0.0555041086648215799531422637686218), /* ln(2)^3 /3! */
FL2FXCONST_DBL(0.00961812910762847716197907157365887), /* ln(2)^4 /4! */
FL2FXCONST_DBL(0.00133335581464284434234122219879962), /* ln(2)^5 /5! */
FL2FXCONST_DBL(1.54035303933816099544370973327423e-4), /* ln(2)^6 /6! */
FL2FXCONST_DBL(1.52527338040598402800254390120096e-5), /* ln(2)^7 /7! */
FL2FXCONST_DBL(1.32154867901443094884037582282884e-6) /* ln(2)^8 /8! */
};
#else
LNK_SECTION_CONSTDATA_L1
static const FIXP_SGL pow2Coeff[MAX_POW2_PRECISION] = {
FL2FXCONST_SGL(0.693147180559945309417232121458177), /* ln(2)^1 /1! */
FL2FXCONST_SGL(0.240226506959100712333551263163332), /* ln(2)^2 /2! */
FL2FXCONST_SGL(0.0555041086648215799531422637686218), /* ln(2)^3 /3! */
FL2FXCONST_SGL(0.00961812910762847716197907157365887), /* ln(2)^4 /4! */
FL2FXCONST_SGL(0.00133335581464284434234122219879962), /* ln(2)^5 /5! */
FL2FXCONST_SGL(1.54035303933816099544370973327423e-4), /* ln(2)^6 /6! */
FL2FXCONST_SGL(1.52527338040598402800254390120096e-5), /* ln(2)^7 /7! */
FL2FXCONST_SGL(1.32154867901443094884037582282884e-6) /* ln(2)^8 /8! */
};
#endif
/*****************************************************************************
functionname: mul_dbl_sgl_rnd
description: Multiply with round.
*****************************************************************************/
/* for rounding a dfract to fract */
#define ACCU_R (LONG) 0x00008000
LNK_SECTION_CODE_L1
FIXP_DBL mul_dbl_sgl_rnd (const FIXP_DBL op1, const FIXP_SGL op2)
{
FIXP_DBL prod;
LONG v = (LONG)(op1);
SHORT u = (SHORT)(op2);
LONG low = u*(v&SGL_MASK);
low = (low+(ACCU_R>>1)) >> (FRACT_BITS-1); /* round */
LONG high = u * ((v>>FRACT_BITS)<<1);
prod = (LONG)(high+low);
return((FIXP_DBL)prod);
}
/*****************************************************************************
functionname: CalcInvLdData
description: Delivers the inverse of function CalcLdData().
Delivers 2^(op*LD_DATA_SCALING)
input: Input op is assumed to be fractional -1.0 < op < 1.0
output: For op == 0, the result is MAXVAL_DBL (almost 1.0).
For negative input values the output should be treated as a positive fractional value.
For positive input values the output should be treated as a positive integer value.
This function does not output negative values.
*****************************************************************************/
LNK_SECTION_CODE_L1
FIXP_DBL CalcInvLdData(FIXP_DBL op)
{
FIXP_DBL result_m;
if ( op == FL2FXCONST_DBL(0.0f) ) {
result_m = (FIXP_DBL)MAXVAL_DBL;
}
else if ( op < FL2FXCONST_DBL(0.0f) ) {
result_m = f2Pow(op, LD_DATA_SHIFT);
}
else {
int result_e;
result_m = f2Pow(op, LD_DATA_SHIFT, &result_e);
result_e = fixMin(fixMax(result_e+1-(DFRACT_BITS-1), -(DFRACT_BITS-1)), (DFRACT_BITS-1)); /* rounding and saturation */
if ( (result_e>0) && ( result_m > (((FIXP_DBL)MAXVAL_DBL)>>result_e) ) ) {
result_m = (FIXP_DBL)MAXVAL_DBL; /* saturate to max representable value */
}
else {
result_m = (scaleValue(result_m, result_e)+(FIXP_DBL)1)>>1; /* descale result + rounding */
}
}
return result_m;
}
/*****************************************************************************
functionname: InitLdInt and CalcLdInt
description: Create and access table with integer LdData (0 to 193)
*****************************************************************************/
LNK_SECTION_CONSTDATA_L1
static const FIXP_DBL ldIntCoeff[] = {
0x80000001, 0x00000000, 0x02000000, 0x032b8034, 0x04000000, 0x04a4d3c2, 0x052b8034, 0x059d5da0,
0x06000000, 0x06570069, 0x06a4d3c2, 0x06eb3a9f, 0x072b8034, 0x0766a009, 0x079d5da0, 0x07d053f7,
0x08000000, 0x082cc7ee, 0x08570069, 0x087ef05b, 0x08a4d3c2, 0x08c8ddd4, 0x08eb3a9f, 0x090c1050,
0x092b8034, 0x0949a785, 0x0966a009, 0x0982809d, 0x099d5da0, 0x09b74949, 0x09d053f7, 0x09e88c6b,
0x0a000000, 0x0a16bad3, 0x0a2cc7ee, 0x0a423162, 0x0a570069, 0x0a6b3d79, 0x0a7ef05b, 0x0a92203d,
0x0aa4d3c2, 0x0ab7110e, 0x0ac8ddd4, 0x0ada3f60, 0x0aeb3a9f, 0x0afbd42b, 0x0b0c1050, 0x0b1bf312,
0x0b2b8034, 0x0b3abb40, 0x0b49a785, 0x0b584822, 0x0b66a009, 0x0b74b1fd, 0x0b82809d, 0x0b900e61,
0x0b9d5da0, 0x0baa708f, 0x0bb74949, 0x0bc3e9ca, 0x0bd053f7, 0x0bdc899b, 0x0be88c6b, 0x0bf45e09,
0x0c000000, 0x0c0b73cb, 0x0c16bad3, 0x0c21d671, 0x0c2cc7ee, 0x0c379085, 0x0c423162, 0x0c4caba8,
0x0c570069, 0x0c6130af, 0x0c6b3d79, 0x0c7527b9, 0x0c7ef05b, 0x0c88983f, 0x0c92203d, 0x0c9b8926,
0x0ca4d3c2, 0x0cae00d2, 0x0cb7110e, 0x0cc0052b, 0x0cc8ddd4, 0x0cd19bb0, 0x0cda3f60, 0x0ce2c97d,
0x0ceb3a9f, 0x0cf39355, 0x0cfbd42b, 0x0d03fda9, 0x0d0c1050, 0x0d140ca0, 0x0d1bf312, 0x0d23c41d,
0x0d2b8034, 0x0d3327c7, 0x0d3abb40, 0x0d423b08, 0x0d49a785, 0x0d510118, 0x0d584822, 0x0d5f7cff,
0x0d66a009, 0x0d6db197, 0x0d74b1fd, 0x0d7ba190, 0x0d82809d, 0x0d894f75, 0x0d900e61, 0x0d96bdad,
0x0d9d5da0, 0x0da3ee7f, 0x0daa708f, 0x0db0e412, 0x0db74949, 0x0dbda072, 0x0dc3e9ca, 0x0dca258e,
0x0dd053f7, 0x0dd6753e, 0x0ddc899b, 0x0de29143, 0x0de88c6b, 0x0dee7b47, 0x0df45e09, 0x0dfa34e1,
0x0e000000, 0x0e05bf94, 0x0e0b73cb, 0x0e111cd2, 0x0e16bad3, 0x0e1c4dfb, 0x0e21d671, 0x0e275460,
0x0e2cc7ee, 0x0e323143, 0x0e379085, 0x0e3ce5d8, 0x0e423162, 0x0e477346, 0x0e4caba8, 0x0e51daa8,
0x0e570069, 0x0e5c1d0b, 0x0e6130af, 0x0e663b74, 0x0e6b3d79, 0x0e7036db, 0x0e7527b9, 0x0e7a1030,
0x0e7ef05b, 0x0e83c857, 0x0e88983f, 0x0e8d602e, 0x0e92203d, 0x0e96d888, 0x0e9b8926, 0x0ea03232,
0x0ea4d3c2, 0x0ea96df0, 0x0eae00d2, 0x0eb28c7f, 0x0eb7110e, 0x0ebb8e96, 0x0ec0052b, 0x0ec474e4,
0x0ec8ddd4, 0x0ecd4012, 0x0ed19bb0, 0x0ed5f0c4, 0x0eda3f60, 0x0ede8797, 0x0ee2c97d, 0x0ee70525,
0x0eeb3a9f, 0x0eef69ff, 0x0ef39355, 0x0ef7b6b4, 0x0efbd42b, 0x0effebcd, 0x0f03fda9, 0x0f0809cf,
0x0f0c1050, 0x0f10113b, 0x0f140ca0, 0x0f18028d, 0x0f1bf312, 0x0f1fde3d, 0x0f23c41d, 0x0f27a4c0,
0x0f2b8034
};
LNK_SECTION_INITCODE
void InitLdInt()
{
/* nothing to do! Use preinitialized logarithm table */
}
LNK_SECTION_CODE_L1
FIXP_DBL CalcLdInt(INT i)
{
/* calculates ld(op)/LD_DATA_SCALING */
/* op is assumed to be an integer value between 1 and 193 */
FDK_ASSERT((193>0) && ((FIXP_DBL)ldIntCoeff[0]==(FIXP_DBL)0x80000001)); /* tab has to be initialized */
if ((i>0)&&(i<193))
return ldIntCoeff[i];
else
{
return (0);
}
}
/*****************************************************************************
functionname: invSqrtNorm2
description: delivers 1/sqrt(op) normalized to .5...1 and the shift value of the OUTPUT
*****************************************************************************/
#define SQRT_BITS 7
#define SQRT_VALUES 128
#define SQRT_BITS_MASK 0x7f
LNK_SECTION_CONSTDATA_L1
static const FIXP_DBL invSqrtTab[SQRT_VALUES] = {
0x5a827999, 0x5a287e03, 0x59cf8cbb, 0x5977a0ab, 0x5920b4de, 0x58cac480, 0x5875cade, 0x5821c364,
0x57cea99c, 0x577c792f, 0x572b2ddf, 0x56dac38d, 0x568b3631, 0x563c81df, 0x55eea2c3, 0x55a19521,
0x55555555, 0x5509dfd0, 0x54bf311a, 0x547545d0, 0x542c1aa3, 0x53e3ac5a, 0x539bf7cc, 0x5354f9e6,
0x530eafa4, 0x52c91617, 0x52842a5e, 0x523fe9ab, 0x51fc513f, 0x51b95e6b, 0x51770e8e, 0x51355f19,
0x50f44d88, 0x50b3d768, 0x5073fa4f, 0x5034b3e6, 0x4ff601df, 0x4fb7e1f9, 0x4f7a5201, 0x4f3d4fce,
0x4f00d943, 0x4ec4ec4e, 0x4e8986e9, 0x4e4ea718, 0x4e144ae8, 0x4dda7072, 0x4da115d9, 0x4d683948,
0x4d2fd8f4, 0x4cf7f31b, 0x4cc08604, 0x4c898fff, 0x4c530f64, 0x4c1d0293, 0x4be767f5, 0x4bb23df9,
0x4b7d8317, 0x4b4935ce, 0x4b1554a6, 0x4ae1de2a, 0x4aaed0f0, 0x4a7c2b92, 0x4a49ecb3, 0x4a1812fa,
0x49e69d16, 0x49b589bb, 0x4984d7a4, 0x49548591, 0x49249249, 0x48f4fc96, 0x48c5c34a, 0x4896e53c,
0x48686147, 0x483a364c, 0x480c6331, 0x47dee6e0, 0x47b1c049, 0x4784ee5f, 0x4758701c, 0x472c447c,
0x47006a80, 0x46d4e130, 0x46a9a793, 0x467ebcb9, 0x46541fb3, 0x4629cf98, 0x45ffcb80, 0x45d61289,
0x45aca3d5, 0x45837e88, 0x455aa1ca, 0x45320cc8, 0x4509beb0, 0x44e1b6b4, 0x44b9f40b, 0x449275ec,
0x446b3b95, 0x44444444, 0x441d8f3b, 0x43f71bbe, 0x43d0e917, 0x43aaf68e, 0x43854373, 0x435fcf14,
0x433a98c5, 0x43159fdb, 0x42f0e3ae, 0x42cc6397, 0x42a81ef5, 0x42841527, 0x4260458d, 0x423caf8c,
0x4219528b, 0x41f62df1, 0x41d3412a, 0x41b08ba1, 0x418e0cc7, 0x416bc40d, 0x4149b0e4, 0x4127d2c3,
0x41062920, 0x40e4b374, 0x40c3713a, 0x40a261ef, 0x40818511, 0x4060da21, 0x404060a1, 0x40201814
};
LNK_SECTION_INITCODE
void InitInvSqrtTab()
{
/* nothing to do !
use preinitialized square root table
*/
}
#if !defined(FUNCTION_invSqrtNorm2)
/*****************************************************************************
delivers 1/sqrt(op) normalized to .5...1 and the shift value of the OUTPUT,
i.e. the denormalized result is 1/sqrt(op) = invSqrtNorm(op) * 2^(shift)
uses Newton-iteration for approximation
Q(n+1) = Q(n) + Q(n) * (0.5 - 2 * V * Q(n)^2)
with Q = 0.5* V ^-0.5; 0.5 <= V < 1.0
*****************************************************************************/
FIXP_DBL invSqrtNorm2(FIXP_DBL op, INT *shift)
{
FIXP_DBL val = op ;
FIXP_DBL reg1, reg2, regtmp ;
if (val == FL2FXCONST_DBL(0.0)) {
*shift = 1 ;
return((LONG)1); /* minimum positive value */
}
/* normalize input, calculate shift value */
FDK_ASSERT(val > FL2FXCONST_DBL(0.0));
*shift = fNormz(val) - 1; /* CountLeadingBits() is not necessary here since test value is always > 0 */
val <<=*shift ; /* normalized input V */
*shift+=2 ; /* bias for exponent */
/* Newton iteration of 1/sqrt(V) */
reg1 = invSqrtTab[ (INT)(val>>(DFRACT_BITS-1-(SQRT_BITS+1))) & SQRT_BITS_MASK ];
reg2 = FL2FXCONST_DBL(0.0625f); /* 0.5 >> 3 */
regtmp= fPow2Div2(reg1); /* a = Q^2 */
regtmp= reg2 - fMultDiv2(regtmp, val); /* b = 0.5 - 2 * V * Q^2 */
reg1 += (fMultDiv2(regtmp, reg1)<<4); /* Q = Q + Q*b */
/* calculate the output exponent = input exp/2 */
if (*shift & 0x00000001) { /* odd shift values ? */
reg2 = FL2FXCONST_DBL(0.707106781186547524400844362104849f); /* 1/sqrt(2); */
reg1 = fMultDiv2(reg1, reg2) << 2;
}
*shift = *shift>>1;
return(reg1);
}
#endif /* !defined(FUNCTION_invSqrtNorm2) */
/*****************************************************************************
functionname: sqrtFixp
description: delivers sqrt(op)
*****************************************************************************/
FIXP_DBL sqrtFixp(FIXP_DBL op)
{
INT tmp_exp = 0;
FIXP_DBL tmp_inv = invSqrtNorm2(op, &tmp_exp);
FDK_ASSERT(tmp_exp > 0) ;
return( (FIXP_DBL) ( fMultDiv2( (op<<(tmp_exp-1)), tmp_inv ) << 2 ));
}
#if !defined(FUNCTION_schur_div)
/*****************************************************************************
functionname: schur_div
description: delivers op1/op2 with op3-bit accuracy
*****************************************************************************/
#if defined(__x86__)
FIXP_DBL schur_div(FIXP_DBL num, FIXP_DBL denum, INT count)
{
INT64 tmp=(INT64)num<<31;
LONG div=(tmp/denum)>>(DFRACT_BITS-count);
return (FIXP_DBL)(div) << (DFRACT_BITS-count);
}
#else
FIXP_DBL schur_div(FIXP_DBL num, FIXP_DBL denum, INT count)
{
INT L_num = (LONG)num>>1;
INT L_denum = (LONG)denum>>1;
INT div = 0;
INT k = count;
FDK_ASSERT (num>=(FIXP_DBL)0);
FDK_ASSERT (denum>(FIXP_DBL)0);
FDK_ASSERT (num <= denum);
if (L_num != 0)
while (--k)
{
div <<= 1;
L_num <<= 1;
if (L_num >= L_denum)
{
L_num -= L_denum;
div++;
}
}
return (FIXP_DBL)(div << (DFRACT_BITS - count));
}
#endif
#endif /* !defined(FUNCTION_schur_div) */
#ifndef FUNCTION_fMultNorm
FIXP_DBL fMultNorm(FIXP_DBL f1, FIXP_DBL f2, INT *result_e)
{
INT product = 0;
INT norm_f1, norm_f2;
if ( (f1 == (FIXP_DBL)0) || (f2 == (FIXP_DBL)0) ) {
*result_e = 0;
return (FIXP_DBL)0;
}
norm_f1 = CountLeadingBits(f1);
f1 = f1 << norm_f1;
norm_f2 = CountLeadingBits(f2);
f2 = f2 << norm_f2;
product = fMult(f1, f2);
*result_e = - (norm_f1 + norm_f2);
return (FIXP_DBL)product;
}
#endif
#ifndef FUNCTION_fDivNorm
FIXP_DBL fDivNorm(FIXP_DBL L_num, FIXP_DBL L_denum, INT *result_e)
{
FIXP_DBL div;
INT norm_num, norm_den;
FDK_ASSERT (L_num >= (FIXP_DBL)0);
FDK_ASSERT (L_denum > (FIXP_DBL)0);
if(L_num == (FIXP_DBL)0)
{
*result_e = 0;
return ((FIXP_DBL)0);
}
norm_num = CountLeadingBits(L_num);
L_num = L_num << norm_num;
L_num = L_num >> 1;
*result_e = - norm_num + 1;
norm_den = CountLeadingBits(L_denum);
L_denum = L_denum << norm_den;
*result_e -= - norm_den;
div = schur_div(L_num, L_denum, FRACT_BITS);
return div;
}
#endif /* !FUNCTION_fDivNorm */
#ifndef FUNCTION_fDivNorm
FIXP_DBL fDivNorm(FIXP_DBL num, FIXP_DBL denom)
{
INT e;
FIXP_DBL res;
FDK_ASSERT (denom >= num);
res = fDivNorm(num, denom, &e);
/* Avoid overflow since we must output a value with exponent 0
there is no other choice than saturating to almost 1.0f */
if(res == (FIXP_DBL)(1<<(DFRACT_BITS-2)) && e == 1)
{
res = (FIXP_DBL)MAXVAL_DBL;
}
else
{
res = scaleValue(res, e);
}
return res;
}
#endif /* !FUNCTION_fDivNorm */
#ifndef FUNCTION_fDivNormHighPrec
FIXP_DBL fDivNormHighPrec(FIXP_DBL num, FIXP_DBL denom, INT *result_e)
{
FIXP_DBL div;
INT norm_num, norm_den;
FDK_ASSERT (num >= (FIXP_DBL)0);
FDK_ASSERT (denom > (FIXP_DBL)0);
if(num == (FIXP_DBL)0)
{
*result_e = 0;
return ((FIXP_DBL)0);
}
norm_num = CountLeadingBits(num);
num = num << norm_num;
num = num >> 1;
*result_e = - norm_num + 1;
norm_den = CountLeadingBits(denom);
denom = denom << norm_den;
*result_e -= - norm_den;
div = schur_div(num, denom, 31);
return div;
}
#endif /* !FUNCTION_fDivNormHighPrec */
FIXP_DBL CalcLog2(FIXP_DBL base_m, INT base_e, INT *result_e)
{
return fLog2(base_m, base_e, result_e);
}
FIXP_DBL f2Pow(
const FIXP_DBL exp_m, const INT exp_e,
INT *result_e
)
{
FIXP_DBL frac_part, result_m;
INT int_part;
if (exp_e > 0)
{
INT exp_bits = DFRACT_BITS-1 - exp_e;
int_part = exp_m >> exp_bits;
frac_part = exp_m - (FIXP_DBL)(int_part << exp_bits);
frac_part = frac_part << exp_e;
}
else
{
int_part = 0;
frac_part = exp_m >> -exp_e;
}
/* Best accuracy is around 0, so try to get there with the fractional part. */
if( frac_part > FL2FXCONST_DBL(0.5f) )
{
int_part = int_part + 1;
frac_part = frac_part + FL2FXCONST_DBL(-1.0f);
}
if( frac_part < FL2FXCONST_DBL(-0.5f) )
{
int_part = int_part - 1;
frac_part = -(FL2FXCONST_DBL(-1.0f) - frac_part);
}
/* Evaluate taylor polynomial which approximates 2^x */
{
FIXP_DBL p;
/* result_m ~= 2^frac_part */
p = frac_part;
/* First taylor series coefficient a_0 = 1.0, scaled by 0.5 due to fMultDiv2(). */
result_m = FL2FXCONST_DBL(1.0f/2.0f);
for (INT i = 0; i < POW2_PRECISION; i++) {
/* next taylor series term: a_i * x^i, x=0 */
result_m = fMultAddDiv2(result_m, pow2Coeff[i], p);
p = fMult(p, frac_part);
}
}
/* "+ 1" compensates fMultAddDiv2() of the polynomial evaluation above. */
*result_e = int_part + 1;
return result_m;
}
FIXP_DBL f2Pow(
const FIXP_DBL exp_m, const INT exp_e
)
{
FIXP_DBL result_m;
INT result_e;
result_m = f2Pow(exp_m, exp_e, &result_e);
result_e = fixMin(DFRACT_BITS-1,fixMax(-(DFRACT_BITS-1),result_e));
return scaleValue(result_m, result_e);
}
FIXP_DBL fPow(
FIXP_DBL base_m, INT base_e,
FIXP_DBL exp_m, INT exp_e,
INT *result_e
)
{
INT ans_lg2_e, baselg2_e;
FIXP_DBL base_lg2, ans_lg2, result;
/* Calc log2 of base */
base_lg2 = fLog2(base_m, base_e, &baselg2_e);
/* Prepare exp */
{
INT leadingBits;
leadingBits = CountLeadingBits(fAbs(exp_m));
exp_m = exp_m << leadingBits;
exp_e -= leadingBits;
}
/* Calc base pow exp */
ans_lg2 = fMult(base_lg2, exp_m);
ans_lg2_e = exp_e + baselg2_e;
/* Calc antilog */
result = f2Pow(ans_lg2, ans_lg2_e, result_e);
return result;
}
FIXP_DBL fLdPow(
FIXP_DBL baseLd_m,
INT baseLd_e,
FIXP_DBL exp_m, INT exp_e,
INT *result_e
)
{
INT ans_lg2_e;
FIXP_DBL ans_lg2, result;
/* Prepare exp */
{
INT leadingBits;
leadingBits = CountLeadingBits(fAbs(exp_m));
exp_m = exp_m << leadingBits;
exp_e -= leadingBits;
}
/* Calc base pow exp */
ans_lg2 = fMult(baseLd_m, exp_m);
ans_lg2_e = exp_e + baseLd_e;
/* Calc antilog */
result = f2Pow(ans_lg2, ans_lg2_e, result_e);
return result;
}
FIXP_DBL fLdPow(
FIXP_DBL baseLd_m, INT baseLd_e,
FIXP_DBL exp_m, INT exp_e
)
{
FIXP_DBL result_m;
int result_e;
result_m = fLdPow(baseLd_m, baseLd_e, exp_m, exp_e, &result_e);
return SATURATE_SHIFT(result_m, -result_e, DFRACT_BITS);
}
FIXP_DBL fPowInt(
FIXP_DBL base_m, INT base_e,
INT exp,
INT *pResult_e
)
{
FIXP_DBL result;
if (exp != 0) {
INT result_e = 0;
if (base_m != (FIXP_DBL)0) {
{
INT leadingBits;
leadingBits = CountLeadingBits( base_m );
base_m <<= leadingBits;
base_e -= leadingBits;
}
result = base_m;
{
int i;
for (i = 1; i < fAbs(exp); i++) {
result = fMult(result, base_m);
}
}
if (exp < 0) {
/* 1.0 / ans */
result = fDivNorm( FL2FXCONST_DBL(0.5f), result, &result_e );
result_e++;
} else {
int ansScale = CountLeadingBits( result );
result <<= ansScale;
result_e -= ansScale;
}
result_e += exp * base_e;
} else {
result = (FIXP_DBL)0;
}
*pResult_e = result_e;
}
else {
result = FL2FXCONST_DBL(0.5f);
*pResult_e = 1;
}
return result;
}
FIXP_DBL fLog2(FIXP_DBL x_m, INT x_e, INT *result_e)
{
FIXP_DBL result_m;
/* Short cut for zero and negative numbers. */
if ( x_m <= FL2FXCONST_DBL(0.0f) ) {
*result_e = DFRACT_BITS-1;
return FL2FXCONST_DBL(-1.0f);
}
/* Calculate log2() */
{
FIXP_DBL px2_m, x2_m;
/* Move input value x_m * 2^x_e toward 1.0, where the taylor approximation
of the function log(1-x) centered at 0 is most accurate. */
{
INT b_norm;
b_norm = fNormz(x_m)-1;
x2_m = x_m << b_norm;
x_e = x_e - b_norm;
}
/* map x from log(x) domain to log(1-x) domain. */
x2_m = - (x2_m + FL2FXCONST_DBL(-1.0) );
/* Taylor polinomial approximation of ln(1-x) */
result_m = FL2FXCONST_DBL(0.0);
px2_m = x2_m;
for (int i=0; i<LD_PRECISION; i++) {
result_m = fMultAddDiv2(result_m, ldCoeff[i], px2_m);
px2_m = fMult(px2_m, x2_m);
}
/* Multiply result with 1/ln(2) = 1.0 + 0.442695040888 (get log2(x) from ln(x) result). */
result_m = fMultAddDiv2(result_m, result_m, FL2FXCONST_DBL(2.0*0.4426950408889634073599246810019));
/* Add exponent part. log2(x_m * 2^x_e) = log2(x_m) + x_e */
if (x_e != 0)
{
int enorm;
enorm = DFRACT_BITS - fNorm((FIXP_DBL)x_e);
/* The -1 in the right shift of result_m compensates the fMultDiv2() above in the taylor polinomial evaluation loop.*/
result_m = (result_m >> (enorm-1)) + ((FIXP_DBL)x_e << (DFRACT_BITS-1-enorm));
*result_e = enorm;
} else {
/* 1 compensates the fMultDiv2() above in the taylor polinomial evaluation loop.*/
*result_e = 1;
}
}
return result_m;
}
FIXP_DBL fLog2(FIXP_DBL x_m, INT x_e)
{
if ( x_m <= FL2FXCONST_DBL(0.0f) ) {
x_m = FL2FXCONST_DBL(-1.0f);
}
else {
INT result_e;
x_m = fLog2(x_m, x_e, &result_e);
x_m = scaleValue(x_m, result_e-LD_DATA_SHIFT);
}
return x_m;
}
|