1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
|
/*************************** Fraunhofer IIS FDK Tools ***********************
(C) Copyright Fraunhofer IIS (2009)
All Rights Reserved
Please be advised that this software and/or program delivery is
Confidential Information of Fraunhofer and subject to and covered by the
Fraunhofer IIS Software Evaluation Agreement
between Google Inc. and Fraunhofer
effective and in full force since March 1, 2012.
You may use this software and/or program only under the terms and
conditions described in the above mentioned Fraunhofer IIS Software
Evaluation Agreement. Any other and/or further use requires a separate agreement.
$Id$
Author(s): M. Lohwasser
Description: auto-correlation functions
This software and/or program is protected by copyright law and international
treaties. Any reproduction or distribution of this software and/or program,
or any portion of it, may result in severe civil and criminal penalties, and
will be prosecuted to the maximum extent possible under law.
******************************************************************************/
#include "autocorr2nd.h"
/* If the accumulator does not provide enough overflow bits,
products have to be shifted down in the autocorrelation below. */
#define SHIFT_FACTOR (5)
#define SHIFT >> (SHIFT_FACTOR)
#if defined(__CC_ARM) || defined(__arm__)
#include "arm/autocorr2nd.cpp"
#endif
/*!
*
* \brief Calculate second order autocorrelation using 2 accumulators
*
*/
#if !defined(FUNCTION_autoCorr2nd_real)
INT
autoCorr2nd_real (ACORR_COEFS *ac, /*!< Pointer to autocorrelation coeffs */
const FIXP_DBL *reBuffer, /*!< Pointer to to real part of input samples */
const int len /*!< Number input samples */
)
{
int j, autoCorrScaling, mScale;
FIXP_DBL accu1, accu2, accu3, accu4, accu5;
const FIXP_DBL *pReBuf;
const FIXP_DBL *realBuf = reBuffer;
/*
r11r,r22r
r01r,r12r
r02r
*/
pReBuf = realBuf-2;
accu5 = ( (fMultDiv2(pReBuf[0], pReBuf[2]) +
fMultDiv2(pReBuf[1], pReBuf[3])) SHIFT);
pReBuf++;
//len must be even
accu1 = fPow2Div2(pReBuf[0]) SHIFT;
accu3 = fMultDiv2(pReBuf[0], pReBuf[1]) SHIFT;
pReBuf++;
for ( j = (len - 2)>>1; j != 0; j--,pReBuf+=2 ) {
accu1 += ( (fPow2Div2(pReBuf[0]) +
fPow2Div2(pReBuf[1])) SHIFT);
accu3 += ( (fMultDiv2(pReBuf[0], pReBuf[1]) +
fMultDiv2(pReBuf[1], pReBuf[2])) SHIFT);
accu5 += ( (fMultDiv2(pReBuf[0], pReBuf[2]) +
fMultDiv2(pReBuf[1], pReBuf[3])) SHIFT);
}
accu2 = (fPow2Div2(realBuf[-2]) SHIFT);
accu2 += accu1;
accu1 += (fPow2Div2(realBuf[len - 2]) SHIFT);
accu4 = (fMultDiv2(realBuf[-1],realBuf[-2]) SHIFT);
accu4 += accu3;
accu3 += (fMultDiv2(realBuf[len - 1],realBuf[len - 2]) SHIFT);
mScale = CntLeadingZeros( (accu1 | accu2 | fAbs(accu3) | fAbs(accu4) | fAbs(accu5)) ) - 1;
autoCorrScaling = mScale - 1 - SHIFT_FACTOR; /* -1 because of fMultDiv2*/
/* Scale to common scale factor */
ac->r11r = accu1 << mScale;
ac->r22r = accu2 << mScale;
ac->r01r = accu3 << mScale;
ac->r12r = accu4 << mScale;
ac->r02r = accu5 << mScale;
ac->det = (fMultDiv2(ac->r11r,ac->r22r) - fMultDiv2(ac->r12r,ac->r12r)) ;
mScale = CountLeadingBits(fAbs(ac->det));
ac->det <<= mScale;
ac->det_scale = mScale - 1;
return autoCorrScaling;
}
#endif
#ifndef LOW_POWER_SBR_ONLY
#if !defined(FUNCTION_autoCorr2nd_cplx)
INT
autoCorr2nd_cplx (ACORR_COEFS *ac, /*!< Pointer to autocorrelation coeffs */
const FIXP_DBL *reBuffer, /*!< Pointer to real part of input samples */
const FIXP_DBL *imBuffer, /*!< Pointer to imag part of input samples */
const int len /*!< Number of input samples */
)
{
int j, autoCorrScaling, mScale, len_scale;
FIXP_DBL accu0, accu1,accu2, accu3, accu4, accu5, accu6, accu7, accu8;
const FIXP_DBL *pReBuf, *pImBuf;
const FIXP_DBL *realBuf = reBuffer;
const FIXP_DBL *imagBuf = imBuffer;
(len>64) ? (len_scale = 6) : (len_scale = 5);
/*
r00r,
r11r,r22r
r01r,r12r
r01i,r12i
r02r,r02i
*/
accu1 = accu3 = accu5 = accu7 = accu8 = FL2FXCONST_DBL(0.0f);
pReBuf = realBuf-2, pImBuf = imagBuf-2;
accu7 += ( (fMultDiv2(pReBuf[2], pReBuf[0]) + fMultDiv2(pImBuf[2], pImBuf[0])) >> len_scale);
accu8 += ( (fMultDiv2(pImBuf[2], pReBuf[0]) - fMultDiv2(pReBuf[2], pImBuf[0])) >> len_scale);
pReBuf = realBuf-1, pImBuf = imagBuf-1;
for ( j = (len - 1); j != 0; j--,pReBuf++,pImBuf++ ){
accu1 += ( (fPow2Div2(pReBuf[0] ) + fPow2Div2(pImBuf[0] )) >> len_scale);
accu3 += ( (fMultDiv2(pReBuf[0], pReBuf[1]) + fMultDiv2(pImBuf[0], pImBuf[1])) >> len_scale);
accu5 += ( (fMultDiv2(pImBuf[1], pReBuf[0]) - fMultDiv2(pReBuf[1], pImBuf[0])) >> len_scale);
accu7 += ( (fMultDiv2(pReBuf[2], pReBuf[0]) + fMultDiv2(pImBuf[2], pImBuf[0])) >> len_scale);
accu8 += ( (fMultDiv2(pImBuf[2], pReBuf[0]) - fMultDiv2(pReBuf[2], pImBuf[0])) >> len_scale);
}
accu2 = ( (fPow2Div2(realBuf[-2]) + fPow2Div2(imagBuf[-2])) >> len_scale);
accu2 += accu1;
accu1 += ( (fPow2Div2(realBuf[len-2]) +
fPow2Div2(imagBuf[len-2])) >> len_scale);
accu0 = ( (fPow2Div2(realBuf[len-1]) +
fPow2Div2(imagBuf[len-1])) >> len_scale) -
( (fPow2Div2(realBuf[-1]) +
fPow2Div2(imagBuf[-1])) >> len_scale);
accu0 += accu1;
accu4 = ( (fMultDiv2(realBuf[-1], realBuf[-2]) +
fMultDiv2(imagBuf[-1], imagBuf[-2])) >> len_scale);
accu4 += accu3;
accu3 += ( (fMultDiv2(realBuf[len-1], realBuf[len-2]) +
fMultDiv2(imagBuf[len-1], imagBuf[len-2])) >> len_scale);
accu6 = ( (fMultDiv2(imagBuf[-1], realBuf[-2]) -
fMultDiv2(realBuf[-1], imagBuf[-2])) >> len_scale);
accu6 += accu5;
accu5 += ( (fMultDiv2(imagBuf[len - 1], realBuf[len - 2]) -
fMultDiv2(realBuf[len - 1], imagBuf[len - 2])) >> len_scale);
mScale = CntLeadingZeros( (accu0 | accu1 | accu2 | fAbs(accu3) | fAbs(accu4) | fAbs(accu5) |
fAbs(accu6) | fAbs(accu7) | fAbs(accu8)) ) - 1;
autoCorrScaling = mScale - 1 - len_scale; /* -1 because of fMultDiv2*/
/* Scale to common scale factor */
ac->r00r = (FIXP_DBL)accu0 << mScale;
ac->r11r = (FIXP_DBL)accu1 << mScale;
ac->r22r = (FIXP_DBL)accu2 << mScale;
ac->r01r = (FIXP_DBL)accu3 << mScale;
ac->r12r = (FIXP_DBL)accu4 << mScale;
ac->r01i = (FIXP_DBL)accu5 << mScale;
ac->r12i = (FIXP_DBL)accu6 << mScale;
ac->r02r = (FIXP_DBL)accu7 << mScale;
ac->r02i = (FIXP_DBL)accu8 << mScale;
ac->det = ( fMultDiv2(ac->r11r,ac->r22r) >> 1 ) -
( (fMultDiv2(ac->r12r,ac->r12r) + fMultDiv2(ac->r12i,ac->r12i)) >> 1 );
mScale = CountLeadingBits(fAbs(ac->det));
ac->det <<= mScale;
ac->det_scale = mScale - 2;
return autoCorrScaling;
}
#endif /* FUNCTION_autoCorr2nd_cplx */
#endif /* LOW_POWER_SBR_ONLY */
|