1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
|
/******************************** MPEG Audio Encoder **************************
(C) Copyright Fraunhofer IIS (1999)
All Rights Reserved
Please be advised that this software and/or program delivery is
Confidential Information of Fraunhofer and subject to and covered by the
Fraunhofer IIS Software Evaluation Agreement
between Google Inc. and Fraunhofer
effective and in full force since March 1, 2012.
You may use this software and/or program only under the terms and
conditions described in the above mentioned Fraunhofer IIS Software
Evaluation Agreement. Any other and/or further use requires a separate agreement.
This software and/or program is protected by copyright law and international
treaties. Any reproduction or distribution of this software and/or program,
or any portion of it, may result in severe civil and criminal penalties, and
will be prosecuted to the maximum extent possible under law.
$Id$
Initial author: M. Werner
contents/description: Perceptual entropie module
******************************************************************************/
#include "line_pe.h"
#include "sf_estim.h"
#include "bit_cnt.h"
#include "genericStds.h"
static const FIXP_DBL C1LdData = FL2FXCONST_DBL(3.0/LD_DATA_SCALING); /* C1 = 3.0 = log(8.0)/log(2) */
static const FIXP_DBL C2LdData = FL2FXCONST_DBL(1.3219281/LD_DATA_SCALING); /* C2 = 1.3219281 = log(2.5)/log(2) */
static const FIXP_DBL C3LdData = FL2FXCONST_DBL(0.5593573); /* 1-C2/C1 */
/* constants that do not change during successive pe calculations */
void FDKaacEnc_prepareSfbPe(PE_CHANNEL_DATA *peChanData,
const FIXP_DBL *sfbEnergyLdData,
const FIXP_DBL *sfbThresholdLdData,
const FIXP_DBL *sfbFormFactorLdData,
const INT *sfbOffset,
const INT sfbCnt,
const INT sfbPerGroup,
const INT maxSfbPerGroup)
{
INT sfbGrp,sfb;
INT sfbWidth;
FIXP_DBL avgFormFactorLdData;
const FIXP_DBL formFacScaling = FL2FXCONST_DBL((float)FORM_FAC_SHIFT/LD_DATA_SCALING);
for (sfbGrp = 0;sfbGrp < sfbCnt;sfbGrp+=sfbPerGroup) {
for (sfb=0; sfb<maxSfbPerGroup; sfb++) {
if ((FIXP_DBL)sfbEnergyLdData[sfbGrp+sfb] > (FIXP_DBL)sfbThresholdLdData[sfbGrp+sfb]) {
sfbWidth = sfbOffset[sfbGrp+sfb+1] - sfbOffset[sfbGrp+sfb];
/* estimate number of active lines */
avgFormFactorLdData = ((-sfbEnergyLdData[sfbGrp+sfb]>>1) + (CalcLdInt(sfbWidth)>>1))>>1;
peChanData->sfbNLines[sfbGrp+sfb] =
(INT)CalcInvLdData( (sfbFormFactorLdData[sfbGrp+sfb] + formFacScaling) + avgFormFactorLdData);
}
else {
peChanData->sfbNLines[sfbGrp+sfb] = 0;
}
}
}
}
/*
formula for one sfb:
pe = n * ld(en/thr), if ld(en/thr) >= C1
pe = n * (C2 + C3 * ld(en/thr)), if ld(en/thr) < C1
n: estimated number of lines in sfb,
ld(x) = log(x)/log(2)
constPart is sfbPe without the threshold part n*ld(thr) or n*C3*ld(thr)
*/
void FDKaacEnc_calcSfbPe(PE_CHANNEL_DATA *RESTRICT peChanData,
const FIXP_DBL *RESTRICT sfbEnergyLdData,
const FIXP_DBL *RESTRICT sfbThresholdLdData,
const INT sfbCnt,
const INT sfbPerGroup,
const INT maxSfbPerGroup,
const INT *isBook,
const INT *isScale)
{
INT sfbGrp,sfb;
INT nLines;
FIXP_DBL logDataRatio;
INT lastValIs = 0;
peChanData->pe = 0;
peChanData->constPart = 0;
peChanData->nActiveLines = 0;
for(sfbGrp = 0;sfbGrp < sfbCnt;sfbGrp+=sfbPerGroup){
for (sfb=0; sfb<maxSfbPerGroup; sfb++) {
if ((FIXP_DBL)sfbEnergyLdData[sfbGrp+sfb] > (FIXP_DBL)sfbThresholdLdData[sfbGrp+sfb]) {
logDataRatio = (FIXP_DBL)(sfbEnergyLdData[sfbGrp+sfb] - sfbThresholdLdData[sfbGrp+sfb]);
nLines = peChanData->sfbNLines[sfbGrp+sfb];
if (logDataRatio >= C1LdData) {
/* scale sfbPe and sfbConstPart with PE_CONSTPART_SHIFT */
peChanData->sfbPe[sfbGrp+sfb] = fMultDiv2(logDataRatio, (FIXP_DBL)(nLines<<(LD_DATA_SHIFT+PE_CONSTPART_SHIFT+1)));
peChanData->sfbConstPart[sfbGrp+sfb] =
fMultDiv2(sfbEnergyLdData[sfbGrp+sfb], (FIXP_DBL)(nLines<<(LD_DATA_SHIFT+PE_CONSTPART_SHIFT+1))); ;
}
else {
/* scale sfbPe and sfbConstPart with PE_CONSTPART_SHIFT */
peChanData->sfbPe[sfbGrp+sfb] =
fMultDiv2(((FIXP_DBL)C2LdData + fMult(C3LdData,logDataRatio)), (FIXP_DBL)(nLines<<(LD_DATA_SHIFT+PE_CONSTPART_SHIFT+1)));
peChanData->sfbConstPart[sfbGrp+sfb] =
fMultDiv2(((FIXP_DBL)C2LdData + fMult(C3LdData,sfbEnergyLdData[sfbGrp+sfb])),
(FIXP_DBL)(nLines<<(LD_DATA_SHIFT+PE_CONSTPART_SHIFT+1))) ;
nLines = fMultI(C3LdData, nLines);
}
peChanData->sfbNActiveLines[sfbGrp+sfb] = nLines;
}
else if( isBook[sfb] ) {
/* provide for cost of scale factor for Intensity */
INT delta = isScale[sfbGrp+sfb] - lastValIs;
lastValIs = isScale[sfbGrp+sfb];
peChanData->sfbPe[sfbGrp+sfb] = FDKaacEnc_bitCountScalefactorDelta(delta)<<PE_CONSTPART_SHIFT;
peChanData->sfbConstPart[sfbGrp+sfb] = 0;
peChanData->sfbNActiveLines[sfbGrp+sfb] = 0;
}
else {
peChanData->sfbPe[sfbGrp+sfb] = 0;
peChanData->sfbConstPart[sfbGrp+sfb] = 0;
peChanData->sfbNActiveLines[sfbGrp+sfb] = 0;
}
/* sum up peChanData values */
peChanData->pe += peChanData->sfbPe[sfbGrp+sfb];
peChanData->constPart += peChanData->sfbConstPart[sfbGrp+sfb];
peChanData->nActiveLines += peChanData->sfbNActiveLines[sfbGrp+sfb];
}
}
/* correct scaled pe and constPart values */
peChanData->pe>>=PE_CONSTPART_SHIFT;
peChanData->constPart>>=PE_CONSTPART_SHIFT;
}
|