1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
|
/***************************** MPEG-4 AAC Decoder **************************
(C) Copyright Fraunhofer IIS (2004)
All Rights Reserved
Please be advised that this software and/or program delivery is
Confidential Information of Fraunhofer and subject to and covered by the
Fraunhofer IIS Software Evaluation Agreement
between Google Inc. and Fraunhofer
effective and in full force since March 1, 2012.
You may use this software and/or program only under the terms and
conditions described in the above mentioned Fraunhofer IIS Software
Evaluation Agreement. Any other and/or further use requires a separate agreement.
$Id$
Author(s): Josef Hoepfl
Description: temporal noise shaping tool
This software and/or program is protected by copyright law and international
treaties. Any reproduction or distribution of this software and/or program,
or any portion of it, may result in severe civil and criminal penalties, and
will be prosecuted to the maximum extent possible under law.
******************************************************************************/
#include "aacdec_tns.h"
#include "aac_rom.h"
#include "FDK_bitstream.h"
#include "channelinfo.h"
/*!
\brief Reset tns data
The function resets the tns data
\return none
*/
void CTns_Reset(CTnsData *pTnsData)
{
/* Note: the following FDKmemclear should not be required. */
FDKmemclear(pTnsData->Filter, TNS_MAX_WINDOWS*TNS_MAXIMUM_FILTERS*sizeof(CFilter));
FDKmemclear(pTnsData->NumberOfFilters, TNS_MAX_WINDOWS*sizeof(UCHAR));
pTnsData->DataPresent = 0;
pTnsData->Active = 0;
}
void CTns_ReadDataPresentFlag(HANDLE_FDK_BITSTREAM bs, /*!< pointer to bitstream */
CTnsData *pTnsData) /*!< pointer to aac decoder channel info */
{
pTnsData->DataPresent = (UCHAR) FDKreadBits(bs,1);
}
/*!
\brief Read tns data from bitstream
The function reads the elements for tns from
the bitstream.
\return none
*/
AAC_DECODER_ERROR CTns_Read(HANDLE_FDK_BITSTREAM bs,
CTnsData *pTnsData,
const CIcsInfo *pIcsInfo,
const UINT flags)
{
UCHAR n_filt,order;
UCHAR length,coef_res,coef_compress;
UCHAR window;
UCHAR wins_per_frame = GetWindowsPerFrame(pIcsInfo);
UCHAR isLongFlag = IsLongBlock(pIcsInfo);
AAC_DECODER_ERROR ErrorStatus = AAC_DEC_OK;
if (!pTnsData->DataPresent) {
return ErrorStatus;
}
for (window = 0; window < wins_per_frame; window++)
{
pTnsData->NumberOfFilters[window] = n_filt = (UCHAR) FDKreadBits(bs, isLongFlag ? 2 : 1);
if (pTnsData->NumberOfFilters[window] > TNS_MAXIMUM_FILTERS){
pTnsData->NumberOfFilters[window] = n_filt = TNS_MAXIMUM_FILTERS;
}
if (n_filt)
{
int index;
UCHAR nextstopband;
coef_res = (UCHAR) FDKreadBits(bs,1);
nextstopband = GetScaleFactorBandsTotal(pIcsInfo);
for (index=0; index < n_filt; index++)
{
CFilter *filter = &pTnsData->Filter[window][index];
length = (UCHAR)FDKreadBits(bs, isLongFlag ? 6 : 4);
if (length > nextstopband){
length = nextstopband;
}
filter->StartBand = nextstopband - length;
filter->StopBand = nextstopband;
nextstopband = filter->StartBand;
{
filter->Order = order = (UCHAR) FDKreadBits(bs, isLongFlag ? 5 : 3);
}
if (filter->Order > TNS_MAXIMUM_ORDER){
filter->Order = order = TNS_MAXIMUM_ORDER;
}
if (order)
{
UCHAR coef,s_mask;
UCHAR i;
SCHAR n_mask;
static const UCHAR sgn_mask[] = { 0x2, 0x4, 0x8 };
static const SCHAR neg_mask[] = { ~0x3, ~0x7, ~0xF };
filter->Direction = FDKreadBits(bs,1) ? -1 : 1;
coef_compress = (UCHAR) FDKreadBits(bs,1);
filter->Resolution = coef_res + 3;
s_mask = sgn_mask[coef_res + 1 - coef_compress];
n_mask = neg_mask[coef_res + 1 - coef_compress];
for (i=0; i < order; i++)
{
coef = (UCHAR) FDKreadBits(bs,filter->Resolution - coef_compress);
filter->Coeff[i] = (coef & s_mask) ? (coef | n_mask) : coef;
}
}
}
}
}
pTnsData->Active = 1;
return ErrorStatus;
}
static void CTns_Filter (FIXP_DBL *spec, int size, int inc, FIXP_TCC coeff [], int order)
{
// - Simple all-pole filter of order "order" defined by
// y(n) = x(n) - a(2)*y(n-1) - ... - a(order+1)*y(n-order)
//
// - The state variables of the filter are initialized to zero every time
//
// - The output data is written over the input data ("in-place operation")
//
// - An input vector of "size" samples is processed and the index increment
// to the next data sample is given by "inc"
int i,j,N;
FIXP_DBL *pSpec;
FIXP_DBL maxVal=FL2FXCONST_DBL(0.0);
INT s;
FDK_ASSERT(order <= TNS_MAXIMUM_ORDER);
C_ALLOC_SCRATCH_START(state, FIXP_DBL, TNS_MAXIMUM_ORDER);
FDKmemclear(state, order*sizeof(FIXP_DBL));
for (i=0; i<size; i++) {
maxVal = fixMax(maxVal,fixp_abs(spec[i]));
}
if ( maxVal > FL2FXCONST_DBL(0.03125*0.70710678118) )
s = fixMax(CntLeadingZeros(maxVal)-6,0);
else
s = fixMax(CntLeadingZeros(maxVal)-5,0);
s = fixMin(s,2);
s = s-1;
if (inc == -1)
pSpec = &spec[size - 1];
else
pSpec = &spec[0];
FIXP_TCC *pCoeff;
#define FIRST_PART_FLTR \
FIXP_DBL x, *pState = state; \
pCoeff = coeff; \
\
if (s < 0) \
x = (pSpec [0]>>1) + fMultDiv2 (*pCoeff++, pState [0]) ; \
else \
x = (pSpec [0]<<s) + fMultDiv2 (*pCoeff++, pState [0]) ;
#define INNER_FLTR_INLINE \
x = fMultAddDiv2 (x, *pCoeff, pState [1]); \
pState [0] = pState [1] - (fMultDiv2 (*pCoeff++, x) <<2) ; \
pState++;
#define LAST_PART_FLTR \
if (s < 0) \
*pSpec = x << 1; \
else \
*pSpec = x >> s; \
*pState =(-x) << 1; \
pSpec += inc ;
if (order>8)
{
N = (order-1)&7;
for (i = size ; i != 0 ; i--)
{
FIRST_PART_FLTR
for (j = N; j > 0 ; j--) { INNER_FLTR_INLINE }
INNER_FLTR_INLINE INNER_FLTR_INLINE INNER_FLTR_INLINE INNER_FLTR_INLINE
INNER_FLTR_INLINE INNER_FLTR_INLINE INNER_FLTR_INLINE INNER_FLTR_INLINE
LAST_PART_FLTR
}
} else if (order>4) {
N = (order-1)&3;
for (i = size ; i != 0 ; i--)
{
FIRST_PART_FLTR
for (j = N; j > 0 ; j--) { INNER_FLTR_INLINE }
INNER_FLTR_INLINE INNER_FLTR_INLINE INNER_FLTR_INLINE INNER_FLTR_INLINE
LAST_PART_FLTR
}
} else {
N = order-1;
for (i = size ; i != 0 ; i--)
{
FIRST_PART_FLTR
for (j = N; j > 0 ; j--) { INNER_FLTR_INLINE }
LAST_PART_FLTR
}
}
C_ALLOC_SCRATCH_END(state, FIXP_DBL, TNS_MAXIMUM_ORDER);
}
/*!
\brief Apply tns to spectral lines
The function applies the tns to the spectrum,
\return none
*/
void CTns_Apply (
CTnsData *RESTRICT pTnsData, /*!< pointer to aac decoder info */
const CIcsInfo *pIcsInfo,
SPECTRAL_PTR pSpectralCoefficient,
const SamplingRateInfo *pSamplingRateInfo,
const INT granuleLength
)
{
int window,index,start,stop,size;
if (pTnsData->Active)
{
C_AALLOC_SCRATCH_START(coeff, FIXP_TCC, TNS_MAXIMUM_ORDER);
for (window=0; window < GetWindowsPerFrame(pIcsInfo); window++)
{
FIXP_DBL *pSpectrum = SPEC(pSpectralCoefficient, window, granuleLength);
for (index=0; index < pTnsData->NumberOfFilters[window]; index++)
{
CFilter *RESTRICT filter = &pTnsData->Filter[window][index];
if (filter->Order > 0)
{
FIXP_TCC *pCoeff;
int tns_max_bands;
pCoeff = &coeff[filter->Order-1];
if (filter->Resolution == 3)
{
int i;
for (i=0; i < filter->Order; i++)
*pCoeff-- = FDKaacDec_tnsCoeff3[filter->Coeff[i]+4];
}
else
{
int i;
for (i=0; i < filter->Order; i++)
*pCoeff-- = FDKaacDec_tnsCoeff4[filter->Coeff[i]+8];
}
switch (granuleLength) {
case 480:
tns_max_bands = tns_max_bands_tbl_480[pSamplingRateInfo->samplingRateIndex-3];
break;
case 512:
tns_max_bands = tns_max_bands_tbl_512[pSamplingRateInfo->samplingRateIndex-3];
break;
default:
tns_max_bands = GetMaximumTnsBands(pIcsInfo, pSamplingRateInfo->samplingRateIndex);
break;
}
start = fixMin( fixMin(filter->StartBand, tns_max_bands),
GetScaleFactorBandsTransmitted(pIcsInfo) );
start = GetScaleFactorBandOffsets(pIcsInfo, pSamplingRateInfo)[start];
stop = fixMin( fixMin(filter->StopBand, tns_max_bands),
GetScaleFactorBandsTransmitted(pIcsInfo) );
stop = GetScaleFactorBandOffsets(pIcsInfo, pSamplingRateInfo)[stop];
size = stop - start;
if (size > 0) {
CTns_Filter(&pSpectrum[start],
size,
filter->Direction,
coeff,
filter->Order );
}
}
}
}
C_AALLOC_SCRATCH_END(coeff, FIXP_TCC, TNS_MAXIMUM_ORDER);
}
}
|