1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
|
/***************************** MPEG-4 AAC Decoder **************************
(C) Copyright Fraunhofer IIS (2004)
All Rights Reserved
Please be advised that this software and/or program delivery is
Confidential Information of Fraunhofer and subject to and covered by the
Fraunhofer IIS Software Evaluation Agreement
between Google Inc. and Fraunhofer
effective and in full force since March 1, 2012.
You may use this software and/or program only under the terms and
conditions described in the above mentioned Fraunhofer IIS Software
Evaluation Agreement. Any other and/or further use requires a separate agreement.
$Id$
Author(s): Josef Hoepfl
Description: perceptual noise substitution tool
This software and/or program is protected by copyright law and international
treaties. Any reproduction or distribution of this software and/or program,
or any portion of it, may result in severe civil and criminal penalties, and
will be prosecuted to the maximum extent possible under law.
******************************************************************************/
#include "aacdec_pns.h"
#include "aac_ram.h"
#include "aac_rom.h"
#include "channelinfo.h"
#include "block.h"
#include "FDK_bitstream.h"
#include "genericStds.h"
#define NOISE_OFFSET 90 /* cf. ISO 14496-3 p. 175 */
/*!
\brief Reset InterChannel and PNS data
The function resets the InterChannel and PNS data
*/
void CPns_ResetData(
CPnsData *pPnsData,
CPnsInterChannelData *pPnsInterChannelData
)
{
/* Assign pointer always, since pPnsData is not persistent data */
pPnsData->pPnsInterChannelData = pPnsInterChannelData;
pPnsData->PnsActive = 0;
pPnsData->CurrentEnergy = 0;
FDKmemclear(pPnsData->pnsUsed,(8*16)*sizeof(UCHAR));
FDKmemclear(pPnsInterChannelData->correlated,(8*16)*sizeof(UCHAR));
}
/*!
\brief Initialize PNS data
The function initializes the PNS data
*/
void CPns_InitPns(
CPnsData *pPnsData,
CPnsInterChannelData *pPnsInterChannelData,
INT* currentSeed, INT* randomSeed)
{
/* save pointer to inter channel data */
pPnsData->pPnsInterChannelData = pPnsInterChannelData;
/* use pointer because seed has to be
same, left and right channel ! */
pPnsData->currentSeed = currentSeed;
pPnsData->randomSeed = randomSeed;
}
/*!
\brief Indicates if PNS is used
The function returns a value indicating whether PNS is used or not
acordding to the noise energy
\return PNS used
*/
int CPns_IsPnsUsed (const CPnsData *pPnsData,
const int group,
const int band)
{
unsigned pns_band = group*16+band;
return pPnsData->pnsUsed[pns_band] & (UCHAR)1;
}
/*!
\brief Set correlation
The function activates the noise correlation between the channel pair
*/
void CPns_SetCorrelation(CPnsData *pPnsData,
const int group,
const int band,
const int outofphase)
{
CPnsInterChannelData *pInterChannelData = pPnsData->pPnsInterChannelData;
unsigned pns_band = group*16+band;
pInterChannelData->correlated[pns_band] = (outofphase) ? 3 : 1;
}
/*!
\brief Indicates if correlation is used
The function indicates if the noise correlation between the channel pair
is activated
\return PNS is correlated
*/
static
int CPns_IsCorrelated(const CPnsData *pPnsData,
const int group,
const int band)
{
CPnsInterChannelData *pInterChannelData = pPnsData->pPnsInterChannelData;
unsigned pns_band = group*16+band;
return (pInterChannelData->correlated[pns_band] & 0x01) ? 1 : 0;
}
/*!
\brief Indicates if correlated out of phase mode is used.
The function indicates if the noise correlation between the channel pair
is activated in out-of-phase mode.
\return PNS is out-of-phase
*/
static
int CPns_IsOutOfPhase(const CPnsData *pPnsData,
const int group,
const int band)
{
CPnsInterChannelData *pInterChannelData = pPnsData->pPnsInterChannelData;
unsigned pns_band = group*16+band;
return (pInterChannelData->correlated[pns_band] & 0x02) ? 1 : 0;
}
/*!
\brief Read PNS information
The function reads the PNS information from the bitstream
*/
void CPns_Read (CPnsData *pPnsData,
HANDLE_FDK_BITSTREAM bs,
const CodeBookDescription *hcb,
SHORT *pScaleFactor,
UCHAR global_gain,
int band,
int group /* = 0 */)
{
int delta ;
UINT pns_band = group*16+band;
if (pPnsData->PnsActive) {
/* Next PNS band case */
delta = CBlock_DecodeHuffmanWord (bs, hcb) - 60;
} else {
/* First PNS band case */
int noiseStartValue = FDKreadBits(bs,9);
delta = noiseStartValue - 256 ;
pPnsData->PnsActive = 1;
pPnsData->CurrentEnergy = global_gain - NOISE_OFFSET;
}
pPnsData->CurrentEnergy += delta ;
pScaleFactor[pns_band] = pPnsData->CurrentEnergy;
pPnsData->pnsUsed[pns_band] = 1;
}
/**
* \brief Generate a vector of noise of given length. The noise values are
* scaled in order to yield a noise energy of 1.0
* \param spec pointer to were the noise values will be written to.
* \param size amount of noise values to be generated.
* \param pRandomState pointer to the state of the random generator being used.
* \return exponent of generated noise vector.
*/
static int GenerateRandomVector (FIXP_DBL *RESTRICT spec,
int size,
int *pRandomState)
{
int i, invNrg_e = 0, nrg_e = 0;
FIXP_DBL invNrg_m, nrg_m = FL2FXCONST_DBL(0.0f) ;
FIXP_DBL *RESTRICT ptr = spec;
int randomState = *pRandomState;
#define GEN_NOISE_NRG_SCALE 7
/* Generate noise and calculate energy. */
for (i=0; i<size; i++)
{
randomState = (1664525L * randomState) + 1013904223L; // Numerical Recipes
nrg_m = fPow2AddDiv2(nrg_m, (FIXP_DBL)randomState>>GEN_NOISE_NRG_SCALE);
*ptr++ = (FIXP_DBL)randomState;
}
nrg_e = GEN_NOISE_NRG_SCALE*2 + 1;
/* weight noise with = 1 / sqrt_nrg; */
invNrg_m = invSqrtNorm2(nrg_m<<1, &invNrg_e);
invNrg_e += -((nrg_e-1)>>1);
for (i=size; i--; )
{
spec[i] = fMult(spec[i], invNrg_m);
}
/* Store random state */
*pRandomState = randomState;
return invNrg_e;
}
static void ScaleBand (FIXP_DBL *RESTRICT spec, int size, int scaleFactor, int specScale, int noise_e, int out_of_phase)
{
int i, shift, sfExponent;
FIXP_DBL sfMatissa;
/* Get gain from scale factor value = 2^(scaleFactor * 0.25) */
sfMatissa = MantissaTable[scaleFactor & 0x03][0];
/* sfExponent = (scaleFactor >> 2) + ExponentTable[scaleFactor & 0x03][0]; */
/* Note: ExponentTable[scaleFactor & 0x03][0] is always 1. */
sfExponent = (scaleFactor >> 2) + 1;
if (out_of_phase != 0) {
sfMatissa = -sfMatissa;
}
/* +1 because of fMultDiv2 below. */
shift = sfExponent - specScale + 1 + noise_e;
/* Apply gain to noise values */
if (shift>=0) {
shift = fixMin( shift, DFRACT_BITS-1 );
for (i = size ; i-- != 0; ) {
spec [i] = fMultDiv2 (spec [i], sfMatissa) << shift;
}
} else {
shift = fixMin( -shift, DFRACT_BITS-1 );
for (i = size ; i-- != 0; ) {
spec [i] = fMultDiv2 (spec [i], sfMatissa) >> shift;
}
}
}
/*!
\brief Apply PNS
The function applies PNS (i.e. it generates noise) on the bands
flagged as noisy bands
*/
void CPns_Apply (const CPnsData *pPnsData,
const CIcsInfo *pIcsInfo,
SPECTRAL_PTR pSpectrum,
const SHORT *pSpecScale,
const SHORT *pScaleFactor,
const SamplingRateInfo *pSamplingRateInfo,
const INT granuleLength,
const int channel)
{
if (pPnsData->PnsActive) {
const short *BandOffsets = GetScaleFactorBandOffsets(pIcsInfo, pSamplingRateInfo);
int ScaleFactorBandsTransmitted = GetScaleFactorBandsTransmitted(pIcsInfo);
for (int window = 0, group = 0; group < GetWindowGroups(pIcsInfo); group++) {
for (int groupwin = 0; groupwin < GetWindowGroupLength(pIcsInfo, group); groupwin++, window++) {
FIXP_DBL *spectrum = SPEC(pSpectrum, window, granuleLength);
for (int band = 0 ; band < ScaleFactorBandsTransmitted; band++) {
if (CPns_IsPnsUsed (pPnsData, group, band)) {
UINT pns_band = group*16+band;
int bandWidth = BandOffsets [band + 1] - BandOffsets [band] ;
int noise_e;
FDK_ASSERT(bandWidth >= 0);
if (channel > 0 && CPns_IsCorrelated(pPnsData, group, band))
{
noise_e = GenerateRandomVector (spectrum + BandOffsets [band], bandWidth,
&pPnsData->randomSeed [pns_band]) ;
}
else
{
pPnsData->randomSeed [pns_band] = *pPnsData->currentSeed ;
noise_e = GenerateRandomVector (spectrum + BandOffsets [band], bandWidth,
pPnsData->currentSeed) ;
}
int outOfPhase = CPns_IsOutOfPhase (pPnsData, group, band);
ScaleBand (spectrum + BandOffsets [band], bandWidth,
pScaleFactor[pns_band],
pSpecScale[window], noise_e, outOfPhase) ;
}
}
}
}
}
}
|