aboutsummaryrefslogtreecommitdiffstats
path: root/fdk-aac/libSBRdec/src/sbrdec_freq_sca.cpp
blob: 165f94bef315e7b6d43c8df11a2463ab7f116941 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
/* -----------------------------------------------------------------------------
Software License for The Fraunhofer FDK AAC Codec Library for Android

© Copyright  1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
Forschung e.V. All rights reserved.

 1.    INTRODUCTION
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
scheme for digital audio. This FDK AAC Codec software is intended to be used on
a wide variety of Android devices.

AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
general perceptual audio codecs. AAC-ELD is considered the best-performing
full-bandwidth communications codec by independent studies and is widely
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
specifications.

Patent licenses for necessary patent claims for the FDK AAC Codec (including
those of Fraunhofer) may be obtained through Via Licensing
(www.vialicensing.com) or through the respective patent owners individually for
the purpose of encoding or decoding bit streams in products that are compliant
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
Android devices already license these patent claims through Via Licensing or
directly from the patent owners, and therefore FDK AAC Codec software may
already be covered under those patent licenses when it is used for those
licensed purposes only.

Commercially-licensed AAC software libraries, including floating-point versions
with enhanced sound quality, are also available from Fraunhofer. Users are
encouraged to check the Fraunhofer website for additional applications
information and documentation.

2.    COPYRIGHT LICENSE

Redistribution and use in source and binary forms, with or without modification,
are permitted without payment of copyright license fees provided that you
satisfy the following conditions:

You must retain the complete text of this software license in redistributions of
the FDK AAC Codec or your modifications thereto in source code form.

You must retain the complete text of this software license in the documentation
and/or other materials provided with redistributions of the FDK AAC Codec or
your modifications thereto in binary form. You must make available free of
charge copies of the complete source code of the FDK AAC Codec and your
modifications thereto to recipients of copies in binary form.

The name of Fraunhofer may not be used to endorse or promote products derived
from this library without prior written permission.

You may not charge copyright license fees for anyone to use, copy or distribute
the FDK AAC Codec software or your modifications thereto.

Your modified versions of the FDK AAC Codec must carry prominent notices stating
that you changed the software and the date of any change. For modified versions
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
AAC Codec Library for Android."

3.    NO PATENT LICENSE

NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
Fraunhofer provides no warranty of patent non-infringement with respect to this
software.

You may use this FDK AAC Codec software or modifications thereto only for
purposes that are authorized by appropriate patent licenses.

4.    DISCLAIMER

This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
including but not limited to the implied warranties of merchantability and
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
or consequential damages, including but not limited to procurement of substitute
goods or services; loss of use, data, or profits, or business interruption,
however caused and on any theory of liability, whether in contract, strict
liability, or tort (including negligence), arising in any way out of the use of
this software, even if advised of the possibility of such damage.

5.    CONTACT INFORMATION

Fraunhofer Institute for Integrated Circuits IIS
Attention: Audio and Multimedia Departments - FDK AAC LL
Am Wolfsmantel 33
91058 Erlangen, Germany

www.iis.fraunhofer.de/amm
amm-info@iis.fraunhofer.de
----------------------------------------------------------------------------- */

/**************************** SBR decoder library ******************************

   Author(s):

   Description:

*******************************************************************************/

/*!
  \file
  \brief  Frequency scale calculation
*/

#include "sbrdec_freq_sca.h"

#include "transcendent.h"
#include "sbr_rom.h"
#include "env_extr.h"

#include "genericStds.h" /* need log() for debug-code only */

#define MAX_OCTAVE 29
#define MAX_SECOND_REGION 50

static int numberOfBands(FIXP_SGL bpo_div16, int start, int stop, int warpFlag);
static void CalcBands(UCHAR *diff, UCHAR start, UCHAR stop, UCHAR num_bands);
static SBR_ERROR modifyBands(UCHAR max_band, UCHAR *diff, UCHAR length);
static void cumSum(UCHAR start_value, UCHAR *diff, UCHAR length,
                   UCHAR *start_adress);

/*!
  \brief     Retrieve QMF-band where the SBR range starts

  Convert startFreq which was read from the bitstream into a
  QMF-channel number.

  \return  Number of start band
*/
static UCHAR getStartBand(
    UINT fs,              /*!< Output sampling frequency */
    UCHAR startFreq,      /*!< Index to table of possible start bands */
    UINT headerDataFlags) /*!< Info to SBR mode */
{
  INT band;
  UINT fsMapped = fs;
  SBR_RATE rate = DUAL;

  if (headerDataFlags & (SBRDEC_SYNTAX_USAC | SBRDEC_SYNTAX_RSVD50)) {
    if (headerDataFlags & SBRDEC_QUAD_RATE) {
      rate = QUAD;
    }
    fsMapped = sbrdec_mapToStdSampleRate(fs, 1);
  }

  FDK_ASSERT(2 * (rate + 1) <= (4));

  switch (fsMapped) {
    case 192000:
      band = FDK_sbrDecoder_sbr_start_freq_192[startFreq];
      break;
    case 176400:
      band = FDK_sbrDecoder_sbr_start_freq_176[startFreq];
      break;
    case 128000:
      band = FDK_sbrDecoder_sbr_start_freq_128[startFreq];
      break;
    case 96000:
    case 88200:
      band = FDK_sbrDecoder_sbr_start_freq_88[rate][startFreq];
      break;
    case 64000:
      band = FDK_sbrDecoder_sbr_start_freq_64[rate][startFreq];
      break;
    case 48000:
      band = FDK_sbrDecoder_sbr_start_freq_48[rate][startFreq];
      break;
    case 44100:
      band = FDK_sbrDecoder_sbr_start_freq_44[rate][startFreq];
      break;
    case 40000:
      band = FDK_sbrDecoder_sbr_start_freq_40[rate][startFreq];
      break;
    case 32000:
      band = FDK_sbrDecoder_sbr_start_freq_32[rate][startFreq];
      break;
    case 24000:
      band = FDK_sbrDecoder_sbr_start_freq_24[rate][startFreq];
      break;
    case 22050:
      band = FDK_sbrDecoder_sbr_start_freq_22[rate][startFreq];
      break;
    case 16000:
      band = FDK_sbrDecoder_sbr_start_freq_16[rate][startFreq];
      break;
    default:
      band = 255;
  }

  return band;
}

/*!
  \brief     Retrieve QMF-band where the SBR range starts

  Convert startFreq which was read from the bitstream into a
  QMF-channel number.

  \return  Number of start band
*/
static UCHAR getStopBand(
    UINT fs,              /*!< Output sampling frequency */
    UCHAR stopFreq,       /*!< Index to table of possible start bands */
    UINT headerDataFlags, /*!< Info to SBR mode */
    UCHAR k0)             /*!< Start freq index */
{
  UCHAR k2;

  if (stopFreq < 14) {
    INT stopMin;
    INT num = 2 * (64);
    UCHAR diff_tot[MAX_OCTAVE + MAX_SECOND_REGION];
    UCHAR *diff0 = diff_tot;
    UCHAR *diff1 = diff_tot + MAX_OCTAVE;

    if (headerDataFlags & SBRDEC_QUAD_RATE) {
      num >>= 1;
    }

    if (fs < 32000) {
      stopMin = (((2 * 6000 * num) / fs) + 1) >> 1;
    } else {
      if (fs < 64000) {
        stopMin = (((2 * 8000 * num) / fs) + 1) >> 1;
      } else {
        stopMin = (((2 * 10000 * num) / fs) + 1) >> 1;
      }
    }

    /*
      Choose a stop band between k1 and 64 depending on stopFreq (0..13),
      based on a logarithmic scale.
      The vectors diff0 and diff1 are used temporarily here.
    */
    CalcBands(diff0, stopMin, 64, 13);
    shellsort(diff0, 13);
    cumSum(stopMin, diff0, 13, diff1);
    k2 = diff1[stopFreq];
  } else if (stopFreq == 14)
    k2 = 2 * k0;
  else
    k2 = 3 * k0;

  /* Limit to Nyquist */
  if (k2 > (64)) k2 = (64);

  /* Range checks */
  /* 1 <= difference <= 48; 1 <= fs <= 96000 */
  {
    UCHAR max_freq_coeffs = (headerDataFlags & SBRDEC_QUAD_RATE)
                                ? MAX_FREQ_COEFFS_QUAD_RATE
                                : MAX_FREQ_COEFFS;
    if (((k2 - k0) > max_freq_coeffs) || (k2 <= k0)) {
      return 255;
    }
  }

  if (headerDataFlags & SBRDEC_QUAD_RATE) {
    return k2; /* skip other checks: (k2 - k0) must be <=
                  MAX_FREQ_COEFFS_QUAD_RATE for all fs */
  }
  if (headerDataFlags & (SBRDEC_SYNTAX_USAC | SBRDEC_SYNTAX_RSVD50)) {
    /* 1 <= difference <= 35; 42000 <= fs <= 96000 */
    if ((fs >= 42000) && ((k2 - k0) > MAX_FREQ_COEFFS_FS44100)) {
      return 255;
    }
    /* 1 <= difference <= 32; 46009 <= fs <= 96000 */
    if ((fs >= 46009) && ((k2 - k0) > MAX_FREQ_COEFFS_FS48000)) {
      return 255;
    }
  } else {
    /* 1 <= difference <= 35; fs == 44100 */
    if ((fs == 44100) && ((k2 - k0) > MAX_FREQ_COEFFS_FS44100)) {
      return 255;
    }
    /* 1 <= difference <= 32; 48000 <= fs <= 96000 */
    if ((fs >= 48000) && ((k2 - k0) > MAX_FREQ_COEFFS_FS48000)) {
      return 255;
    }
  }

  return k2;
}

/*!
  \brief     Generates master frequency tables

  Frequency tables are calculated according to the selected domain
  (linear/logarithmic) and granularity.
  IEC 14496-3 4.6.18.3.2.1

  \return  errorCode, 0 if successful
*/
SBR_ERROR
sbrdecUpdateFreqScale(
    UCHAR *v_k_master, /*!< Master table to be created */
    UCHAR *numMaster,  /*!< Number of entries in master table */
    UINT fs,           /*!< SBR working sampling rate */
    HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Control data from bitstream */
    UINT flags) {
  FIXP_SGL bpo_div16; /* bands_per_octave divided by 16 */
  INT dk = 0;

  /* Internal variables */
  UCHAR k0, k2, i;
  UCHAR num_bands0 = 0;
  UCHAR num_bands1 = 0;
  UCHAR diff_tot[MAX_OCTAVE + MAX_SECOND_REGION];
  UCHAR *diff0 = diff_tot;
  UCHAR *diff1 = diff_tot + MAX_OCTAVE;
  INT k2_achived;
  INT k2_diff;
  INT incr = 0;

  /*
    Determine start band
  */
  if (flags & SBRDEC_QUAD_RATE) {
    fs >>= 1;
  }

  k0 = getStartBand(fs, hHeaderData->bs_data.startFreq, flags);
  if (k0 == 255) {
    return SBRDEC_UNSUPPORTED_CONFIG;
  }

  /*
    Determine stop band
  */
  k2 = getStopBand(fs, hHeaderData->bs_data.stopFreq, flags, k0);
  if (k2 == 255) {
    return SBRDEC_UNSUPPORTED_CONFIG;
  }

  if (hHeaderData->bs_data.freqScale > 0) { /* Bark */
    INT k1;

    if (hHeaderData->bs_data.freqScale == 1) {
      bpo_div16 = FL2FXCONST_SGL(12.0f / 16.0f);
    } else if (hHeaderData->bs_data.freqScale == 2) {
      bpo_div16 = FL2FXCONST_SGL(10.0f / 16.0f);
    } else {
      bpo_div16 = FL2FXCONST_SGL(8.0f / 16.0f);
    }

    /* Ref: ISO/IEC 23003-3, Figure 12 - Flowchart calculation of fMaster for
     * 4:1 system when bs_freq_scale > 0 */
    if (flags & SBRDEC_QUAD_RATE) {
      if ((SHORT)k0 < (SHORT)(bpo_div16 >> ((FRACT_BITS - 1) - 4))) {
        bpo_div16 = (FIXP_SGL)(k0 & (UCHAR)0xfe)
                    << ((FRACT_BITS - 1) - 4); /* bpo_div16 = floor(k0/2)*2 */
      }
    }

    if (1000 * k2 > 2245 * k0) { /* Two or more regions */
      k1 = 2 * k0;

      num_bands0 = numberOfBands(bpo_div16, k0, k1, 0);
      num_bands1 =
          numberOfBands(bpo_div16, k1, k2, hHeaderData->bs_data.alterScale);
      if (num_bands0 < 1) {
        return SBRDEC_UNSUPPORTED_CONFIG;
      }
      if (num_bands1 < 1) {
        return SBRDEC_UNSUPPORTED_CONFIG;
      }

      CalcBands(diff0, k0, k1, num_bands0);
      shellsort(diff0, num_bands0);
      if (diff0[0] == 0) {
        return SBRDEC_UNSUPPORTED_CONFIG;
      }

      cumSum(k0, diff0, num_bands0, v_k_master);

      CalcBands(diff1, k1, k2, num_bands1);
      shellsort(diff1, num_bands1);
      if (diff0[num_bands0 - 1] > diff1[0]) {
        SBR_ERROR err;

        err = modifyBands(diff0[num_bands0 - 1], diff1, num_bands1);
        if (err) return SBRDEC_UNSUPPORTED_CONFIG;
      }

      /* Add 2nd region */
      cumSum(k1, diff1, num_bands1, &v_k_master[num_bands0]);
      *numMaster = num_bands0 + num_bands1; /* Output nr of bands */

    } else { /* Only one region */
      k1 = k2;

      num_bands0 = numberOfBands(bpo_div16, k0, k1, 0);
      if (num_bands0 < 1) {
        return SBRDEC_UNSUPPORTED_CONFIG;
      }
      CalcBands(diff0, k0, k1, num_bands0);
      shellsort(diff0, num_bands0);
      if (diff0[0] == 0) {
        return SBRDEC_UNSUPPORTED_CONFIG;
      }

      cumSum(k0, diff0, num_bands0, v_k_master);
      *numMaster = num_bands0; /* Output nr of bands */
    }
  } else { /* Linear mode */
    if (hHeaderData->bs_data.alterScale == 0) {
      dk = 1;
      /* FLOOR to get to few number of bands (next lower even number) */
      num_bands0 = (k2 - k0) & 254;
    } else {
      dk = 2;
      num_bands0 = (((k2 - k0) >> 1) + 1) & 254; /* ROUND to the closest fit */
    }

    if (num_bands0 < 1) {
      return SBRDEC_UNSUPPORTED_CONFIG;
      /* We must return already here because 'i' can become negative below. */
    }

    k2_achived = k0 + num_bands0 * dk;
    k2_diff = k2 - k2_achived;

    for (i = 0; i < num_bands0; i++) diff_tot[i] = dk;

    /* If linear scale wasn't achieved */
    /* and we got too wide SBR area */
    if (k2_diff < 0) {
      incr = 1;
      i = 0;
    }

    /* If linear scale wasn't achieved */
    /* and we got too small SBR area */
    if (k2_diff > 0) {
      incr = -1;
      i = num_bands0 - 1;
    }

    /* Adjust diff vector to get sepc. SBR range */
    while (k2_diff != 0) {
      diff_tot[i] = diff_tot[i] - incr;
      i = i + incr;
      k2_diff = k2_diff + incr;
    }

    cumSum(k0, diff_tot, num_bands0, v_k_master); /* cumsum */
    *numMaster = num_bands0;                      /* Output nr of bands */
  }

  if (*numMaster < 1) {
    return SBRDEC_UNSUPPORTED_CONFIG;
  }

  /* Ref: ISO/IEC 23003-3 Cor.3, "In 7.5.5.2, add to the requirements:"*/
  if (flags & SBRDEC_QUAD_RATE) {
    int k;
    for (k = 1; k < *numMaster; k++) {
      if (!(v_k_master[k] - v_k_master[k - 1] <= k0 - 2)) {
        return SBRDEC_UNSUPPORTED_CONFIG;
      }
    }
  }

  /*
    Print out the calculated table
  */

  return SBRDEC_OK;
}

/*!
  \brief     Calculate frequency ratio of one SBR band

  All SBR bands should span a constant frequency range in the logarithmic
  domain. This function calculates the ratio of any SBR band's upper and lower
  frequency.

 \return    num_band-th root of k_start/k_stop
*/
static FIXP_SGL calcFactorPerBand(int k_start, int k_stop, int num_bands) {
  /* Scaled bandfactor and step 1 bit right to avoid overflow
   * use double data type */
  FIXP_DBL bandfactor = FL2FXCONST_DBL(0.25f); /* Start value */
  FIXP_DBL step = FL2FXCONST_DBL(0.125f); /* Initial increment for factor */

  int direction = 1;

  /* Because saturation can't be done in INT IIS,
   * changed start and stop data type from FIXP_SGL to FIXP_DBL */
  FIXP_DBL start = k_start << (DFRACT_BITS - 8);
  FIXP_DBL stop = k_stop << (DFRACT_BITS - 8);

  FIXP_DBL temp;

  int j, i = 0;

  while (step > FL2FXCONST_DBL(0.0f)) {
    i++;
    temp = stop;

    /* Calculate temp^num_bands: */
    for (j = 0; j < num_bands; j++)
      // temp = fMult(temp,bandfactor);
      temp = fMultDiv2(temp, bandfactor) << 2;

    if (temp < start) { /* Factor too strong, make it weaker */
      if (direction == 0)
        /* Halfen step. Right shift is not done as fract because otherwise the
           lowest bit cannot be cleared due to rounding */
        step = (FIXP_DBL)((LONG)step >> 1);
      direction = 1;
      bandfactor = bandfactor + step;
    } else { /* Factor is too weak: make it stronger */
      if (direction == 1) step = (FIXP_DBL)((LONG)step >> 1);
      direction = 0;
      bandfactor = bandfactor - step;
    }

    if (i > 100) {
      step = FL2FXCONST_DBL(0.0f);
    }
  }
  return FX_DBL2FX_SGL(bandfactor << 1);
}

/*!
  \brief     Calculate number of SBR bands between start and stop band

  Given the number of bands per octave, this function calculates how many
  bands fit in the given frequency range.
  When the warpFlag is set, the 'band density' is decreased by a factor
  of 1/1.3

  \return    number of bands
*/
static int numberOfBands(
    FIXP_SGL bpo_div16, /*!< Input: number of bands per octave divided by 16 */
    int start,          /*!< First QMF band of SBR frequency range */
    int stop,           /*!< Last QMF band of SBR frequency range + 1 */
    int warpFlag)       /*!< Stretching flag */
{
  FIXP_SGL num_bands_div128;
  int num_bands;

  num_bands_div128 =
      FX_DBL2FX_SGL(fMult(FDK_getNumOctavesDiv8(start, stop), bpo_div16));

  if (warpFlag) {
    /* Apply the warp factor of 1.3 to get wider bands.  We use a value
       of 32768/25200 instead of the exact value to avoid critical cases
       of rounding.
    */
    num_bands_div128 = FX_DBL2FX_SGL(
        fMult(num_bands_div128, FL2FXCONST_SGL(25200.0 / 32768.0)));
  }

  /* add scaled 1 for rounding to even numbers: */
  num_bands_div128 = num_bands_div128 + FL2FXCONST_SGL(1.0f / 128.0f);
  /* scale back to right aligned integer and double the value: */
  num_bands = 2 * ((LONG)num_bands_div128 >> (FRACT_BITS - 7));

  return (num_bands);
}

/*!
  \brief     Calculate width of SBR bands

  Given the desired number of bands within the SBR frequency range,
  this function calculates the width of each SBR band in QMF channels.
  The bands get wider from start to stop (bark scale).
*/
static void CalcBands(UCHAR *diff,     /*!< Vector of widths to be calculated */
                      UCHAR start,     /*!< Lower end of subband range */
                      UCHAR stop,      /*!< Upper end of subband range */
                      UCHAR num_bands) /*!< Desired number of bands */
{
  int i;
  int previous;
  int current;
  FIXP_SGL exact, temp;
  FIXP_SGL bandfactor = calcFactorPerBand(start, stop, num_bands);

  previous = stop; /* Start with highest QMF channel */
  exact = (FIXP_SGL)(
      stop << (FRACT_BITS - 8)); /* Shift left to gain some accuracy */

  for (i = num_bands - 1; i >= 0; i--) {
    /* Calculate border of next lower sbr band */
    exact = FX_DBL2FX_SGL(fMult(exact, bandfactor));

    /* Add scaled 0.5 for rounding:
       We use a value 128/256 instead of 0.5 to avoid some critical cases of
       rounding. */
    temp = exact + FL2FXCONST_SGL(128.0 / 32768.0);

    /* scale back to right alinged integer: */
    current = (LONG)temp >> (FRACT_BITS - 8);

    /* Save width of band i */
    diff[i] = previous - current;
    previous = current;
  }
}

/*!
  \brief     Calculate cumulated sum vector from delta vector
*/
static void cumSum(UCHAR start_value, UCHAR *diff, UCHAR length,
                   UCHAR *start_adress) {
  int i;
  start_adress[0] = start_value;
  for (i = 1; i <= length; i++)
    start_adress[i] = start_adress[i - 1] + diff[i - 1];
}

/*!
  \brief     Adapt width of frequency bands in the second region

  If SBR spans more than 2 octaves, the upper part of a bark-frequency-scale
  is calculated separately. This function tries to avoid that the second region
  starts with a band smaller than the highest band of the first region.
*/
static SBR_ERROR modifyBands(UCHAR max_band_previous, UCHAR *diff,
                             UCHAR length) {
  int change = max_band_previous - diff[0];

  /* Limit the change so that the last band cannot get narrower than the first
   * one */
  if (change > (diff[length - 1] - diff[0]) >> 1)
    change = (diff[length - 1] - diff[0]) >> 1;

  diff[0] += change;
  diff[length - 1] -= change;
  shellsort(diff, length);

  return SBRDEC_OK;
}

/*!
  \brief   Update high resolution frequency band table
*/
static void sbrdecUpdateHiRes(UCHAR *h_hires, UCHAR *num_hires,
                              UCHAR *v_k_master, UCHAR num_bands,
                              UCHAR xover_band) {
  UCHAR i;

  *num_hires = num_bands - xover_band;

  for (i = xover_band; i <= num_bands; i++) {
    h_hires[i - xover_band] = v_k_master[i];
  }
}

/*!
  \brief  Build low resolution table out of high resolution table
*/
static void sbrdecUpdateLoRes(UCHAR *h_lores, UCHAR *num_lores, UCHAR *h_hires,
                              UCHAR num_hires) {
  UCHAR i;

  if ((num_hires & 1) == 0) {
    /* If even number of hires bands */
    *num_lores = num_hires >> 1;
    /* Use every second lores=hires[0,2,4...] */
    for (i = 0; i <= *num_lores; i++) h_lores[i] = h_hires[i * 2];
  } else {
    /* Odd number of hires, which means xover is odd */
    *num_lores = (num_hires + 1) >> 1;
    /* Use lores=hires[0,1,3,5 ...] */
    h_lores[0] = h_hires[0];
    for (i = 1; i <= *num_lores; i++) {
      h_lores[i] = h_hires[i * 2 - 1];
    }
  }
}

/*!
  \brief   Derive a low-resolution frequency-table from the master frequency
  table
*/
void sbrdecDownSampleLoRes(UCHAR *v_result, UCHAR num_result,
                           UCHAR *freqBandTableRef, UCHAR num_Ref) {
  int step;
  int i, j;
  int org_length, result_length;
  int v_index[MAX_FREQ_COEFFS >> 1];

  /* init */
  org_length = num_Ref;
  result_length = num_result;

  v_index[0] = 0; /* Always use left border */
  i = 0;
  while (org_length > 0) {
    /* Create downsample vector */
    i++;
    step = org_length / result_length;
    org_length = org_length - step;
    result_length--;
    v_index[i] = v_index[i - 1] + step;
  }

  for (j = 0; j <= i; j++) {
    /* Use downsample vector to index LoResolution vector */
    v_result[j] = freqBandTableRef[v_index[j]];
  }
}

/*!
  \brief   Sorting routine
*/
void shellsort(UCHAR *in, UCHAR n) {
  int i, j, v, w;
  int inc = 1;

  do
    inc = 3 * inc + 1;
  while (inc <= n);

  do {
    inc = inc / 3;
    for (i = inc; i < n; i++) {
      v = in[i];
      j = i;
      while ((w = in[j - inc]) > v) {
        in[j] = w;
        j -= inc;
        if (j < inc) break;
      }
      in[j] = v;
    }
  } while (inc > 1);
}

/*!
  \brief   Reset frequency band tables
  \return  errorCode, 0 if successful
*/
SBR_ERROR
resetFreqBandTables(HANDLE_SBR_HEADER_DATA hHeaderData, const UINT flags) {
  SBR_ERROR err = SBRDEC_OK;
  int k2, kx, lsb, usb;
  int intTemp;
  UCHAR nBandsLo, nBandsHi;
  HANDLE_FREQ_BAND_DATA hFreq = &hHeaderData->freqBandData;

  /* Calculate master frequency function */
  err = sbrdecUpdateFreqScale(hFreq->v_k_master, &hFreq->numMaster,
                              hHeaderData->sbrProcSmplRate, hHeaderData, flags);

  if (err || (hHeaderData->bs_info.xover_band > hFreq->numMaster)) {
    return SBRDEC_UNSUPPORTED_CONFIG;
  }

  /* Derive Hiresolution from master frequency function */
  sbrdecUpdateHiRes(hFreq->freqBandTable[1], &nBandsHi, hFreq->v_k_master,
                    hFreq->numMaster, hHeaderData->bs_info.xover_band);
  /* Derive Loresolution from Hiresolution */
  sbrdecUpdateLoRes(hFreq->freqBandTable[0], &nBandsLo, hFreq->freqBandTable[1],
                    nBandsHi);

  hFreq->nSfb[0] = nBandsLo;
  hFreq->nSfb[1] = nBandsHi;

  /* Check index to freqBandTable[0] */
  if (!(nBandsLo > 0) ||
      (nBandsLo > (((hHeaderData->numberOfAnalysisBands == 16)
                        ? MAX_FREQ_COEFFS_QUAD_RATE
                        : MAX_FREQ_COEFFS_DUAL_RATE) >>
                   1))) {
    return SBRDEC_UNSUPPORTED_CONFIG;
  }

  lsb = hFreq->freqBandTable[0][0];
  usb = hFreq->freqBandTable[0][nBandsLo];

  /* Check for start frequency border k_x:
     - ISO/IEC 14496-3 4.6.18.3.6 Requirements
     - ISO/IEC 23003-3 7.5.5.2    Modifications and additions to the MPEG-4 SBR
     tool
  */
  /* Note that lsb > as hHeaderData->numberOfAnalysisBands is a valid SBR config
   * for 24 band QMF analysis. */
  if ((lsb > ((flags & SBRDEC_QUAD_RATE) ? 16 : (32))) || (lsb >= usb)) {
    return SBRDEC_UNSUPPORTED_CONFIG;
  }

  /* Calculate number of noise bands */

  k2 = hFreq->freqBandTable[1][nBandsHi];
  kx = hFreq->freqBandTable[1][0];

  if (hHeaderData->bs_data.noise_bands == 0) {
    hFreq->nNfb = 1;
  } else /* Calculate no of noise bands 1,2 or 3 bands/octave */
  {
    /* Fetch number of octaves divided by 32 */
    intTemp = (LONG)FDK_getNumOctavesDiv8(kx, k2) >> 2;

    /* Integer-Multiplication with number of bands: */
    intTemp = intTemp * hHeaderData->bs_data.noise_bands;

    /* Add scaled 0.5 for rounding: */
    intTemp = intTemp + (LONG)FL2FXCONST_SGL(0.5f / 32.0f);

    /* Convert to right-aligned integer: */
    intTemp = intTemp >> (FRACT_BITS - 1 /*sign*/ - 5 /* rescale */);

    if (intTemp == 0) intTemp = 1;

    hFreq->nNfb = intTemp;
  }

  hFreq->nInvfBands = hFreq->nNfb;

  if (hFreq->nNfb > MAX_NOISE_COEFFS) {
    return SBRDEC_UNSUPPORTED_CONFIG;
  }

  /* Get noise bands */
  sbrdecDownSampleLoRes(hFreq->freqBandTableNoise, hFreq->nNfb,
                        hFreq->freqBandTable[0], nBandsLo);

  /* save old highband; required for overlap in usac
     when headerchange occurs at XVAR and VARX frame; */
  hFreq->ov_highSubband = hFreq->highSubband;

  hFreq->lowSubband = lsb;
  hFreq->highSubband = usb;

  return SBRDEC_OK;
}