summaryrefslogtreecommitdiffstats
path: root/fdk-aac/libSACdec/src/sac_calcM1andM2.cpp
blob: 6e5a1455ff0a129a5f7ad2e3826bf51c6d21fa0d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
/* -----------------------------------------------------------------------------
Software License for The Fraunhofer FDK AAC Codec Library for Android

© Copyright  1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
Forschung e.V. All rights reserved.

 1.    INTRODUCTION
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
scheme for digital audio. This FDK AAC Codec software is intended to be used on
a wide variety of Android devices.

AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
general perceptual audio codecs. AAC-ELD is considered the best-performing
full-bandwidth communications codec by independent studies and is widely
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
specifications.

Patent licenses for necessary patent claims for the FDK AAC Codec (including
those of Fraunhofer) may be obtained through Via Licensing
(www.vialicensing.com) or through the respective patent owners individually for
the purpose of encoding or decoding bit streams in products that are compliant
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
Android devices already license these patent claims through Via Licensing or
directly from the patent owners, and therefore FDK AAC Codec software may
already be covered under those patent licenses when it is used for those
licensed purposes only.

Commercially-licensed AAC software libraries, including floating-point versions
with enhanced sound quality, are also available from Fraunhofer. Users are
encouraged to check the Fraunhofer website for additional applications
information and documentation.

2.    COPYRIGHT LICENSE

Redistribution and use in source and binary forms, with or without modification,
are permitted without payment of copyright license fees provided that you
satisfy the following conditions:

You must retain the complete text of this software license in redistributions of
the FDK AAC Codec or your modifications thereto in source code form.

You must retain the complete text of this software license in the documentation
and/or other materials provided with redistributions of the FDK AAC Codec or
your modifications thereto in binary form. You must make available free of
charge copies of the complete source code of the FDK AAC Codec and your
modifications thereto to recipients of copies in binary form.

The name of Fraunhofer may not be used to endorse or promote products derived
from this library without prior written permission.

You may not charge copyright license fees for anyone to use, copy or distribute
the FDK AAC Codec software or your modifications thereto.

Your modified versions of the FDK AAC Codec must carry prominent notices stating
that you changed the software and the date of any change. For modified versions
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
AAC Codec Library for Android."

3.    NO PATENT LICENSE

NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
Fraunhofer provides no warranty of patent non-infringement with respect to this
software.

You may use this FDK AAC Codec software or modifications thereto only for
purposes that are authorized by appropriate patent licenses.

4.    DISCLAIMER

This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
including but not limited to the implied warranties of merchantability and
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
or consequential damages, including but not limited to procurement of substitute
goods or services; loss of use, data, or profits, or business interruption,
however caused and on any theory of liability, whether in contract, strict
liability, or tort (including negligence), arising in any way out of the use of
this software, even if advised of the possibility of such damage.

5.    CONTACT INFORMATION

Fraunhofer Institute for Integrated Circuits IIS
Attention: Audio and Multimedia Departments - FDK AAC LL
Am Wolfsmantel 33
91058 Erlangen, Germany

www.iis.fraunhofer.de/amm
amm-info@iis.fraunhofer.de
----------------------------------------------------------------------------- */

/*********************** MPEG surround decoder library *************************

   Author(s):

   Description: SAC Dec M1 and M2 calculation

*******************************************************************************/

#include "sac_calcM1andM2.h"
#include "sac_bitdec.h"
#include "sac_process.h"
#include "sac_rom.h"
#include "sac_smoothing.h"
#include "FDK_trigFcts.h"

/* assorted definitions and constants */

#define ABS_THR2 1.0e-9
#define SQRT2_FDK \
  ((FIXP_DBL)FL2FXCONST_DBL(0.70710678118f)) /* FDKsqrt(2.0) scaled by 0.5 */

static void param2UMX_PS__FDK(spatialDec* self,
                              FIXP_DBL H11[MAX_PARAMETER_BANDS],
                              FIXP_DBL H12[MAX_PARAMETER_BANDS],
                              FIXP_DBL H21[MAX_PARAMETER_BANDS],
                              FIXP_DBL H22[MAX_PARAMETER_BANDS],
                              FIXP_DBL c_l[MAX_PARAMETER_BANDS],
                              FIXP_DBL c_r[MAX_PARAMETER_BANDS], int ottBoxIndx,
                              int parameterSetIndx, int resBands);

static void param2UMX_PS_Core__FDK(
    const SCHAR cld[MAX_PARAMETER_BANDS], const SCHAR icc[MAX_PARAMETER_BANDS],
    const int numOttBands, const int resBands,
    FIXP_DBL H11[MAX_PARAMETER_BANDS], FIXP_DBL H12[MAX_PARAMETER_BANDS],
    FIXP_DBL H21[MAX_PARAMETER_BANDS], FIXP_DBL H22[MAX_PARAMETER_BANDS],
    FIXP_DBL c_l[MAX_PARAMETER_BANDS], FIXP_DBL c_r[MAX_PARAMETER_BANDS]);

static void param2UMX_PS_IPD_OPD__FDK(
    spatialDec* self, const SPATIAL_BS_FRAME* frame,
    FIXP_DBL H11re[MAX_PARAMETER_BANDS], FIXP_DBL H12re[MAX_PARAMETER_BANDS],
    FIXP_DBL H21re[MAX_PARAMETER_BANDS], FIXP_DBL H22re[MAX_PARAMETER_BANDS],
    FIXP_DBL c_l[MAX_PARAMETER_BANDS], FIXP_DBL c_r[MAX_PARAMETER_BANDS],
    int ottBoxIndx, int parameterSetIndx, int residualBands);

static void param2UMX_Prediction__FDK(
    spatialDec* self, FIXP_DBL H11re[MAX_PARAMETER_BANDS],
    FIXP_DBL H11im[MAX_PARAMETER_BANDS], FIXP_DBL H12re[MAX_PARAMETER_BANDS],
    FIXP_DBL H12im[MAX_PARAMETER_BANDS], FIXP_DBL H21re[MAX_PARAMETER_BANDS],
    FIXP_DBL H21im[MAX_PARAMETER_BANDS], FIXP_DBL H22re[MAX_PARAMETER_BANDS],
    FIXP_DBL H22im[MAX_PARAMETER_BANDS], int ottBoxIndx, int parameterSetIndx,
    int resBands);

/* static void SpatialDecCalculateM0(spatialDec* self,int ps); */
static SACDEC_ERROR SpatialDecCalculateM1andM2_212(
    spatialDec* self, int ps, const SPATIAL_BS_FRAME* frame);

/*******************************************************************************
 Functionname: SpatialDecGetResidualIndex
 *******************************************************************************

 Description:

 Arguments:

 Input:

 Output:

*******************************************************************************/
int SpatialDecGetResidualIndex(spatialDec* self, int row) {
  return row2residual[self->treeConfig][row];
}

/*******************************************************************************
 Functionname: UpdateAlpha
 *******************************************************************************

 Description:

 Arguments:

 Input:

 Output:

*******************************************************************************/
static void updateAlpha(spatialDec* self) {
  int nChIn = self->numInputChannels;
  int ch;

  for (ch = 0; ch < nChIn; ch++) {
    FIXP_DBL alpha = /* FL2FXCONST_DBL(1.0f) */ (FIXP_DBL)MAXVAL_DBL;

    self->arbdmxAlphaPrev__FDK[ch] = self->arbdmxAlpha__FDK[ch];

    self->arbdmxAlpha__FDK[ch] = alpha;
  }
}

/*******************************************************************************
 Functionname: SpatialDecCalculateM1andM2
 *******************************************************************************
 Description:
 Arguments:
*******************************************************************************/
SACDEC_ERROR SpatialDecCalculateM1andM2(spatialDec* self, int ps,
                                        const SPATIAL_BS_FRAME* frame) {
  SACDEC_ERROR err = MPS_OK;

  if ((self->arbitraryDownmix != 0) && (ps == 0)) {
    updateAlpha(self);
  }

  self->pActivM2ParamBands = NULL;

  switch (self->upmixType) {
    case UPMIXTYPE_BYPASS:
    case UPMIXTYPE_NORMAL:
      switch (self->treeConfig) {
        case TREE_212:
          err = SpatialDecCalculateM1andM2_212(self, ps, frame);
          break;
        default:
          err = MPS_WRONG_TREECONFIG;
      };
      break;

    default:
      err = MPS_WRONG_TREECONFIG;
  }

  if (err != MPS_OK) {
    goto bail;
  }

bail:
  return err;
}

/*******************************************************************************
 Functionname: SpatialDecCalculateM1andM2_212
 *******************************************************************************

 Description:

 Arguments:

 Return:

*******************************************************************************/
static SACDEC_ERROR SpatialDecCalculateM1andM2_212(
    spatialDec* self, int ps, const SPATIAL_BS_FRAME* frame) {
  SACDEC_ERROR err = MPS_OK;
  int pb;

  FIXP_DBL H11re[MAX_PARAMETER_BANDS] = {FL2FXCONST_DBL(0.0f)};
  FIXP_DBL H12re[MAX_PARAMETER_BANDS] = {FL2FXCONST_DBL(0.0f)};
  FIXP_DBL H21re[MAX_PARAMETER_BANDS] = {FL2FXCONST_DBL(0.0f)};
  FIXP_DBL H22re[MAX_PARAMETER_BANDS] = {FL2FXCONST_DBL(0.0f)};
  FIXP_DBL H11im[MAX_PARAMETER_BANDS] = {FL2FXCONST_DBL(0.0f)};
  FIXP_DBL H21im[MAX_PARAMETER_BANDS] = {FL2FXCONST_DBL(0.0f)};

  INT phaseCoding = self->phaseCoding;

  switch (phaseCoding) {
    case 1:
      /* phase coding: yes; residuals: no */
      param2UMX_PS_IPD_OPD__FDK(self, frame, H11re, H12re, H21re, H22re, NULL,
                                NULL, 0, ps, self->residualBands[0]);
      break;
    case 3:
      /* phase coding: yes; residuals: yes */
      param2UMX_Prediction__FDK(self, H11re, H11im, H12re, NULL, H21re, H21im,
                                H22re, NULL, 0, ps, self->residualBands[0]);
      break;
    default:
      if (self->residualCoding) {
        /* phase coding: no; residuals: yes */
        param2UMX_Prediction__FDK(self, H11re, NULL, H12re, NULL, H21re, NULL,
                                  H22re, NULL, 0, ps, self->residualBands[0]);
      } else {
        /* phase coding: no; residuals: no */
        param2UMX_PS__FDK(self, H11re, H12re, H21re, H22re, NULL, NULL, 0, ps,
                          0);
      }
      break;
  }

  for (pb = 0; pb < self->numParameterBands; pb++) {
    self->M2Real__FDK[0][0][pb] = (H11re[pb]);
    self->M2Real__FDK[0][1][pb] = (H12re[pb]);

    self->M2Real__FDK[1][0][pb] = (H21re[pb]);
    self->M2Real__FDK[1][1][pb] = (H22re[pb]);
  }
  if (phaseCoding == 3) {
    for (pb = 0; pb < self->numParameterBands; pb++) {
      self->M2Imag__FDK[0][0][pb] = (H11im[pb]);
      self->M2Imag__FDK[1][0][pb] = (H21im[pb]);
      self->M2Imag__FDK[0][1][pb] = (FIXP_DBL)0;  // H12im[pb];
      self->M2Imag__FDK[1][1][pb] = (FIXP_DBL)0;  // H22im[pb];
    }
  }

  if (self->phaseCoding == 1) {
    SpatialDecSmoothOPD(
        self, frame,
        ps); /* INPUT: PhaseLeft, PhaseRight, (opdLeftState, opdRightState) */
  }

  return err;
}

/*******************************************************************************
 Functionname: param2UMX_PS_Core
 *******************************************************************************

 Description:

 Arguments:

 Return:

*******************************************************************************/
static void param2UMX_PS_Core__FDK(
    const SCHAR cld[MAX_PARAMETER_BANDS], const SCHAR icc[MAX_PARAMETER_BANDS],
    const int numOttBands, const int resBands,
    FIXP_DBL H11[MAX_PARAMETER_BANDS], FIXP_DBL H12[MAX_PARAMETER_BANDS],
    FIXP_DBL H21[MAX_PARAMETER_BANDS], FIXP_DBL H22[MAX_PARAMETER_BANDS],
    FIXP_DBL c_l[MAX_PARAMETER_BANDS], FIXP_DBL c_r[MAX_PARAMETER_BANDS]) {
  int band;

  if ((c_l != NULL) && (c_r != NULL)) {
    for (band = 0; band < numOttBands; band++) {
      SpatialDequantGetCLDValues(cld[band], &c_l[band], &c_r[band]);
    }
  }

  band = 0;
  FDK_ASSERT(resBands == 0);
  for (; band < numOttBands; band++) {
    /* compute mixing variables: */
    const int idx1 = cld[band];
    const int idx2 = icc[band];
    H11[band] = FX_CFG2FX_DBL(H11_nc[idx1][idx2]);
    H21[band] = FX_CFG2FX_DBL(H11_nc[30 - idx1][idx2]);
    H12[band] = FX_CFG2FX_DBL(H12_nc[idx1][idx2]);
    H22[band] = FX_CFG2FX_DBL(-H12_nc[30 - idx1][idx2]);
  }
}

/*******************************************************************************
 Functionname: param2UMX_PS
 *******************************************************************************

 Description:

 Arguments:

 Return:

*******************************************************************************/
static void param2UMX_PS__FDK(spatialDec* self,
                              FIXP_DBL H11[MAX_PARAMETER_BANDS],
                              FIXP_DBL H12[MAX_PARAMETER_BANDS],
                              FIXP_DBL H21[MAX_PARAMETER_BANDS],
                              FIXP_DBL H22[MAX_PARAMETER_BANDS],
                              FIXP_DBL c_l[MAX_PARAMETER_BANDS],
                              FIXP_DBL c_r[MAX_PARAMETER_BANDS], int ottBoxIndx,
                              int parameterSetIndx, int residualBands) {
  int band;
  param2UMX_PS_Core__FDK(self->ottCLD__FDK[ottBoxIndx][parameterSetIndx],
                         self->ottICC__FDK[ottBoxIndx][parameterSetIndx],
                         self->numOttBands[ottBoxIndx], residualBands, H11, H12,
                         H21, H22, c_l, c_r);

  for (band = self->numOttBands[ottBoxIndx]; band < self->numParameterBands;
       band++) {
    H11[band] = H21[band] = H12[band] = H22[band] = FL2FXCONST_DBL(0.f);
  }
}

#define N_CLD (31)
#define N_IPD (16)

static const FIXP_DBL sinIpd_tab[N_IPD] = {
    FIXP_DBL(0x00000000), FIXP_DBL(0x30fbc54e), FIXP_DBL(0x5a827999),
    FIXP_DBL(0x7641af3d), FIXP_DBL(0x7fffffff), FIXP_DBL(0x7641af3d),
    FIXP_DBL(0x5a82799a), FIXP_DBL(0x30fbc54d), FIXP_DBL(0xffffffff),
    FIXP_DBL(0xcf043ab3), FIXP_DBL(0xa57d8666), FIXP_DBL(0x89be50c3),
    FIXP_DBL(0x80000000), FIXP_DBL(0x89be50c3), FIXP_DBL(0xa57d8666),
    FIXP_DBL(0xcf043ab2),
};

/* cosIpd[i] = sinIpd[(i+4)&15] */
#define SIN_IPD(a) (sinIpd_tab[(a)])
#define COS_IPD(a) (sinIpd_tab[((a) + 4) & 15])  //(cosIpd_tab[(a)])

static const FIXP_SGL sqrt_one_minus_ICC2[8] = {
    FL2FXCONST_SGL(0.0f),
    FL2FXCONST_SGL(0.349329357483736f),
    FL2FXCONST_SGL(0.540755219669676f),
    FL2FXCONST_SGL(0.799309172723546f),
    FL2FXCONST_SGL(0.929968187843004f),
    FX_DBL2FXCONST_SGL(MAXVAL_DBL),
    FL2FXCONST_SGL(0.80813303360276f),
    FL2FXCONST_SGL(0.141067359796659f),
};

/* exponent of sqrt(CLD) */
static const SCHAR sqrt_CLD_e[N_CLD] = {
    -24, -7, -6, -5, -4, -4, -3, -3, -2, -2, -1, -1, 0, 0, 0, 1,
    1,   1,  1,  2,  2,  3,  3,  4,  4,  5,  5,  6,  7, 8, 25};

static const FIXP_DBL sqrt_CLD_m[N_CLD] = {
    FL2FXCONST_DBL(0.530542153566195f),
    FL2FXCONST_DBL(0.719796896243647f),
    FL2FXCONST_DBL(0.64f),
    FL2FXCONST_DBL(0.569049411212455f),
    FL2FXCONST_DBL(0.505964425626941f),
    FL2FXCONST_DBL(0.899746120304559f),
    FL2FXCONST_DBL(0.635462587779425f),
    FL2FXCONST_DBL(0.897614763441571f),
    FL2FXCONST_DBL(0.633957276984445f),
    FL2FXCONST_DBL(0.895488455427336f),
    FL2FXCONST_DBL(0.632455532033676f),
    FL2FXCONST_DBL(0.796214341106995f),
    FL2FXCONST_DBL(0.501187233627272f),
    FL2FXCONST_DBL(0.630957344480193f),
    FL2FXCONST_DBL(0.794328234724281f),
    FL2FXCONST_DBL(0.5f),
    FL2FXCONST_DBL(0.629462705897084f),
    FL2FXCONST_DBL(0.792446596230557f),
    FL2FXCONST_DBL(0.99763115748444f),
    FL2FXCONST_DBL(0.627971607877395f),
    FL2FXCONST_DBL(0.790569415042095f),
    FL2FXCONST_DBL(0.558354490188704f),
    FL2FXCONST_DBL(0.788696680600242f),
    FL2FXCONST_DBL(0.557031836333591f),
    FL2FXCONST_DBL(0.786828382371355f),
    FL2FXCONST_DBL(0.555712315637163f),
    FL2FXCONST_DBL(0.988211768802619f),
    FL2FXCONST_DBL(0.87865832060992f),
    FL2FXCONST_DBL(0.78125f),
    FL2FXCONST_DBL(0.694640394546454f),
    FL2FXCONST_DBL(0.942432183077448f),
};

static const FIXP_DBL CLD_m[N_CLD] = {
    FL2FXCONST_DBL(0.281474976710656f),
    FL2FXCONST_DBL(0.518107571841987f),
    FL2FXCONST_DBL(0.4096f),
    FL2FXCONST_DBL(0.323817232401242f),
    FL2FXCONST_DBL(0.256f),
    FL2FXCONST_DBL(0.809543081003105f),
    FL2FXCONST_DBL(0.403812700467324f),
    FL2FXCONST_DBL(0.805712263548267f),
    FL2FXCONST_DBL(0.401901829041533f),
    FL2FXCONST_DBL(0.801899573803636f),
    FL2FXCONST_DBL(0.4f),
    FL2FXCONST_DBL(0.633957276984445f),
    FL2FXCONST_DBL(0.251188643150958f),
    FL2FXCONST_DBL(0.398107170553497f),
    FL2FXCONST_DBL(0.630957344480193f),
    FL2FXCONST_DBL(0.25f),
    FL2FXCONST_DBL(0.396223298115278f),
    FL2FXCONST_DBL(0.627971607877395f),
    FL2FXCONST_DBL(0.995267926383743f),
    FL2FXCONST_DBL(0.394348340300121f),
    FL2FXCONST_DBL(0.625f),
    FL2FXCONST_DBL(0.311759736713887f),
    FL2FXCONST_DBL(0.62204245398984f),
    FL2FXCONST_DBL(0.310284466689172f),
    FL2FXCONST_DBL(0.619098903305123f),
    FL2FXCONST_DBL(0.308816177750818f),
    FL2FXCONST_DBL(0.9765625f),
    FL2FXCONST_DBL(0.772040444377046f),
    FL2FXCONST_DBL(0.6103515625f),
    FL2FXCONST_DBL(0.482525277735654f),
    FL2FXCONST_DBL(0.888178419700125),
};

static FIXP_DBL dequantIPD_CLD_ICC_splitAngle__FDK_Function(INT ipdIdx,
                                                            INT cldIdx,
                                                            INT iccIdx) {
  FIXP_DBL cld;
  SpatialDequantGetCLD2Values(cldIdx, &cld);

  /*const FIXP_DBL one_m = (FIXP_DBL)MAXVAL_DBL;
  const int one_e = 0;*/
  const FIXP_DBL one_m = FL2FXCONST_DBL(0.5f);
  const int one_e = 1;
  /* iidLin = sqrt(cld); */
  FIXP_DBL iidLin_m = sqrt_CLD_m[cldIdx];
  int iidLin_e = sqrt_CLD_e[cldIdx];
  /* iidLin2 = cld; */
  FIXP_DBL iidLin2_m = CLD_m[cldIdx];
  int iidLin2_e = sqrt_CLD_e[cldIdx] << 1;
  /* iidLin21 = iidLin2 + 1.0f; */
  int iidLin21_e;
  FIXP_DBL iidLin21_m =
      fAddNorm(iidLin2_m, iidLin2_e, one_m, one_e, &iidLin21_e);
  /* iidIcc2 = iidLin * icc * 2.0f; */
  FIXP_CFG icc = dequantICC__FDK[iccIdx];
  FIXP_DBL temp1_m, temp1c_m;
  int temp1_e, temp1c_e;
  temp1_m = fMult(iidLin_m, icc);
  temp1_e = iidLin_e + 1;

  FIXP_DBL cosIpd, sinIpd;
  cosIpd = COS_IPD(ipdIdx);
  sinIpd = SIN_IPD(ipdIdx);

  temp1c_m = fMult(temp1_m, cosIpd);
  temp1c_e = temp1_e;  //+cosIpd_e;

  int temp2_e, temp3_e, inv_temp3_e, ratio_e;
  FIXP_DBL temp2_m =
      fAddNorm(iidLin21_m, iidLin21_e, temp1c_m, temp1c_e, &temp2_e);
  FIXP_DBL temp3_m =
      fAddNorm(iidLin21_m, iidLin21_e, temp1_m, temp1_e, &temp3_e);
  /* calculate 1/temp3 needed later */
  inv_temp3_e = temp3_e;
  FIXP_DBL inv_temp3_m = invFixp(temp3_m, &inv_temp3_e);
  FIXP_DBL ratio_m =
      fAddNorm(fMult(inv_temp3_m, temp2_m), (inv_temp3_e + temp2_e),
               FL2FXCONST_DBL(1e-9f), 0, &ratio_e);

  int weight2_e, tempb_atan2_e;
  FIXP_DBL weight2_m =
      fPow(ratio_m, ratio_e, FL2FXCONST_DBL(0.5f), -1, &weight2_e);
  /* atan2(w2*sinIpd, w1*iidLin + w2*cosIpd) = atan2(w2*sinIpd, (2 - w2)*iidLin
   * + w2*cosIpd) = atan2(w2*sinIpd, 2*iidLin + w2*(cosIpd - iidLin)); */
  /* tmpa_atan2 = w2*sinIpd; tmpb_atan2 = 2*iidLin + w2*(cosIpd - iidLin); */
  FIXP_DBL tempb_atan2_m = iidLin_m;
  tempb_atan2_e = iidLin_e + 1;
  int add_tmp1_e = 0;
  FIXP_DBL add_tmp1_m = fAddNorm(cosIpd, 0, -iidLin_m, iidLin_e, &add_tmp1_e);
  FIXP_DBL add_tmp2_m = fMult(add_tmp1_m, weight2_m);
  int add_tmp2_e = add_tmp1_e + weight2_e;
  tempb_atan2_m = fAddNorm(tempb_atan2_m, tempb_atan2_e, add_tmp2_m, add_tmp2_e,
                           &tempb_atan2_e);

  FIXP_DBL tempa_atan2_m = fMult(weight2_m, sinIpd);
  int tempa_atan2_e = weight2_e;  // + sinIpd_e;

  if (tempa_atan2_e > tempb_atan2_e) {
    tempb_atan2_m = (tempb_atan2_m >> (tempa_atan2_e - tempb_atan2_e));
    tempb_atan2_e = tempa_atan2_e;
  } else if (tempb_atan2_e > tempa_atan2_e) {
    tempa_atan2_m = (tempa_atan2_m >> (tempb_atan2_e - tempa_atan2_e));
  }

  return fixp_atan2(tempa_atan2_m, tempb_atan2_m);
}

static void calculateOpd(spatialDec* self, INT ottBoxIndx, INT parameterSetIndx,
                         FIXP_DBL opd[MAX_PARAMETER_BANDS]) {
  INT band;

  for (band = 0; band < self->numOttBandsIPD; band++) {
    INT idxCld = self->ottCLD__FDK[ottBoxIndx][parameterSetIndx][band];
    INT idxIpd = self->ottIPD__FDK[ottBoxIndx][parameterSetIndx][band];
    INT idxIcc = self->ottICC__FDK[ottBoxIndx][parameterSetIndx][band];
    FIXP_DBL cld, ipd;

    ipd = FX_CFG2FX_DBL(dequantIPD__FDK[idxIpd]);

    SpatialDequantGetCLD2Values(idxCld, &cld);

    /* ipd(idxIpd==8) == PI */
    if ((cld == FL2FXCONST_DBL(0.0f)) && (idxIpd == 8)) {
      opd[2 * band] = FL2FXCONST_DBL(0.0f);
    } else {
      opd[2 * band] = (dequantIPD_CLD_ICC_splitAngle__FDK_Function(
                           idxIpd, idxCld, idxIcc) >>
                       (IPD_SCALE - AT2O_SF));
    }
    opd[2 * band + 1] = opd[2 * band] - ipd;
  }
}

/* wrap phase in rad to the range of 0 <= x < 2*pi */
static FIXP_DBL wrapPhase(FIXP_DBL phase) {
  while (phase < (FIXP_DBL)0) phase += PIx2__IPD;
  while (phase >= PIx2__IPD) phase -= PIx2__IPD;
  FDK_ASSERT((phase >= (FIXP_DBL)0) && (phase < PIx2__IPD));

  return phase;
}

/*******************************************************************************
 Functionname: param2UMX_PS_IPD
 *******************************************************************************

 Description:

 Arguments:

 Return:

*******************************************************************************/
static void param2UMX_PS_IPD_OPD__FDK(
    spatialDec* self, const SPATIAL_BS_FRAME* frame,
    FIXP_DBL H11[MAX_PARAMETER_BANDS], FIXP_DBL H12[MAX_PARAMETER_BANDS],
    FIXP_DBL H21[MAX_PARAMETER_BANDS], FIXP_DBL H22[MAX_PARAMETER_BANDS],
    FIXP_DBL c_l[MAX_PARAMETER_BANDS], FIXP_DBL c_r[MAX_PARAMETER_BANDS],
    int ottBoxIndx, int parameterSetIndx, int residualBands) {
  INT band;
  FIXP_DBL opd[2 * MAX_PARAMETER_BANDS];
  INT numOttBands = self->numOttBands[ottBoxIndx];
  INT numIpdBands;

  numIpdBands = frame->phaseMode ? self->numOttBandsIPD : 0;

  FDK_ASSERT(self->residualCoding == 0);

  param2UMX_PS_Core__FDK(self->ottCLD__FDK[ottBoxIndx][parameterSetIndx],
                         self->ottICC__FDK[ottBoxIndx][parameterSetIndx],
                         self->numOttBands[ottBoxIndx], residualBands, H11, H12,
                         H21, H22, c_l, c_r);

  for (band = self->numOttBands[ottBoxIndx]; band < self->numParameterBands;
       band++) {
    H11[band] = H21[band] = H12[band] = H22[band] = FL2FXCONST_DBL(0.f);
  }

  if (frame->phaseMode) {
    calculateOpd(self, ottBoxIndx, parameterSetIndx, opd);

    for (band = 0; band < numIpdBands; band++) {
      self->PhaseLeft__FDK[band] = wrapPhase(opd[2 * band]);
      self->PhaseRight__FDK[band] = wrapPhase(opd[2 * band + 1]);
    }
  }

  for (band = numIpdBands; band < numOttBands; band++) {
    self->PhaseLeft__FDK[band] = FL2FXCONST_DBL(0.0f);
    self->PhaseRight__FDK[band] = FL2FXCONST_DBL(0.0f);
  }
}

FDK_INLINE void param2UMX_Prediction_Core__FDK(
    FIXP_DBL* H11re, FIXP_DBL* H11im, FIXP_DBL* H12re, FIXP_DBL* H12im,
    FIXP_DBL* H21re, FIXP_DBL* H21im, FIXP_DBL* H22re, FIXP_DBL* H22im,
    int cldIdx, int iccIdx, int ipdIdx, int band, int numOttBandsIPD,
    int resBands) {
#define MAX_WEIGHT (1.2f)
  FDK_ASSERT((H12im == NULL) && (H22im == NULL)); /* always == 0 */

  if ((band < numOttBandsIPD) && (cldIdx == 15) && (iccIdx == 0) &&
      (ipdIdx == 8)) {
    const FIXP_DBL gain =
        FL2FXCONST_DBL(0.5f / MAX_WEIGHT) >> SCALE_PARAM_M2_212_PRED;

    *H11re = gain;
    if (band < resBands) {
      *H21re = gain;
      *H12re = gain;
      *H22re = -gain;
    } else {
      *H21re = -gain;
      *H12re = (FIXP_DBL)0;
      *H22re = (FIXP_DBL)0;
    }
    if ((H11im != NULL) &&
        (H21im != NULL) /*&& (H12im!=NULL) && (H22im!=NULL)*/) {
      *H11im = (FIXP_DBL)0;
      *H21im = (FIXP_DBL)0;
      /* *H12im = (FIXP_DBL)0; */
      /* *H22im = (FIXP_DBL)0; */
    }
  } else {
    const FIXP_DBL one_m = (FIXP_DBL)MAXVAL_DBL;
    const int one_e = 0;
    /* iidLin = sqrt(cld); */
    FIXP_DBL iidLin_m = sqrt_CLD_m[cldIdx];
    int iidLin_e = sqrt_CLD_e[cldIdx];
    /* iidLin2 = cld; */
    FIXP_DBL iidLin2_m = CLD_m[cldIdx];
    int iidLin2_e = sqrt_CLD_e[cldIdx] << 1;
    /* iidLin21 = iidLin2 + 1.0f; */
    int iidLin21_e;
    FIXP_DBL iidLin21_m =
        fAddNorm(iidLin2_m, iidLin2_e, one_m, one_e, &iidLin21_e);
    /* iidIcc2 = iidLin * icc * 2.0f; */
    FIXP_CFG icc = dequantICC__FDK[iccIdx];
    int iidIcc2_e = iidLin_e + 1;
    FIXP_DBL iidIcc2_m = fMult(iidLin_m, icc);
    FIXP_DBL temp_m, sqrt_temp_m, inv_temp_m, weight_m;
    int temp_e, sqrt_temp_e, inv_temp_e, weight_e, scale;
    FIXP_DBL cosIpd, sinIpd;

    cosIpd = COS_IPD((band < numOttBandsIPD) ? ipdIdx : 0);
    sinIpd = SIN_IPD((band < numOttBandsIPD) ? ipdIdx : 0);

    /* temp    = iidLin21 + iidIcc2 * cosIpd; */
    temp_m = fAddNorm(iidLin21_m, iidLin21_e, fMult(iidIcc2_m, cosIpd),
                      iidIcc2_e, &temp_e);

    /* calculate 1/temp needed later */
    inv_temp_e = temp_e;
    inv_temp_m = invFixp(temp_m, &inv_temp_e);

    /* 1/weight = sqrt(temp) * 1/sqrt(iidLin21) */
    if (temp_e & 1) {
      sqrt_temp_m = temp_m >> 1;
      sqrt_temp_e = (temp_e + 1) >> 1;
    } else {
      sqrt_temp_m = temp_m;
      sqrt_temp_e = temp_e >> 1;
    }
    sqrt_temp_m = sqrtFixp(sqrt_temp_m);
    if (iidLin21_e & 1) {
      iidLin21_e += 1;
      iidLin21_m >>= 1;
    }
    /* weight_[m,e] is actually 1/weight in the next few lines */
    weight_m = invSqrtNorm2(iidLin21_m, &weight_e);
    weight_e -= iidLin21_e >> 1;
    weight_m = fMult(sqrt_temp_m, weight_m);
    weight_e += sqrt_temp_e;
    scale = fNorm(weight_m);
    weight_m = scaleValue(weight_m, scale);
    weight_e -= scale;
    /* weight = 0.5 * max(1/weight, 1/maxWeight) */
    if ((weight_e < 0) ||
        ((weight_e == 0) && (weight_m < FL2FXCONST_DBL(1.f / MAX_WEIGHT)))) {
      weight_m = FL2FXCONST_DBL(1.f / MAX_WEIGHT);
      weight_e = 0;
    }
    weight_e -= 1;

    {
      FIXP_DBL alphaRe_m, alphaIm_m, accu_m;
      int alphaRe_e, alphaIm_e, accu_e;
      /* alphaRe = (1.0f - iidLin2) / temp; */
      alphaRe_m = fAddNorm(one_m, one_e, -iidLin2_m, iidLin2_e, &alphaRe_e);
      alphaRe_m = fMult(alphaRe_m, inv_temp_m);
      alphaRe_e += inv_temp_e;

      /* H11re = weight - alphaRe * weight; */
      /* H21re = weight + alphaRe * weight; */
      accu_m = fMult(alphaRe_m, weight_m);
      accu_e = alphaRe_e + weight_e;
      {
        int accu2_e;
        FIXP_DBL accu2_m;
        accu2_m = fAddNorm(weight_m, weight_e, -accu_m, accu_e, &accu2_e);
        *H11re = scaleValue(accu2_m, accu2_e - SCALE_PARAM_M2_212_PRED);
        accu2_m = fAddNorm(weight_m, weight_e, accu_m, accu_e, &accu2_e);
        *H21re = scaleValue(accu2_m, accu2_e - SCALE_PARAM_M2_212_PRED);
      }

      if ((H11im != NULL) &&
          (H21im != NULL) /*&& (H12im != NULL) && (H22im != NULL)*/) {
        /* alphaIm = -iidIcc2 * sinIpd / temp; */
        alphaIm_m = fMult(-iidIcc2_m, sinIpd);
        alphaIm_m = fMult(alphaIm_m, inv_temp_m);
        alphaIm_e = iidIcc2_e + inv_temp_e;
        /* H11im = -alphaIm * weight; */
        /* H21im =  alphaIm * weight; */
        accu_m = fMult(alphaIm_m, weight_m);
        accu_e = alphaIm_e + weight_e;
        accu_m = scaleValue(accu_m, accu_e - SCALE_PARAM_M2_212_PRED);
        *H11im = -accu_m;
        *H21im = accu_m;

        /* *H12im = (FIXP_DBL)0; */
        /* *H22im = (FIXP_DBL)0; */
      }
    }
    if (band < resBands) {
      FIXP_DBL weight =
          scaleValue(weight_m, weight_e - SCALE_PARAM_M2_212_PRED);
      *H12re = weight;
      *H22re = -weight;
    } else {
      /* beta = 2.0f * iidLin * (float) sqrt(1.0f - icc * icc) * weight / temp;
       */
      FIXP_DBL beta_m;
      int beta_e;
      beta_m = FX_SGL2FX_DBL(sqrt_one_minus_ICC2[iccIdx]);
      beta_e = 1; /* multipication with 2.0f */
      beta_m = fMult(beta_m, weight_m);
      beta_e += weight_e;
      beta_m = fMult(beta_m, iidLin_m);
      beta_e += iidLin_e;
      beta_m = fMult(beta_m, inv_temp_m);
      beta_e += inv_temp_e;

      beta_m = scaleValue(beta_m, beta_e - SCALE_PARAM_M2_212_PRED);
      *H12re = beta_m;
      *H22re = -beta_m;
    }
  }
}

static void param2UMX_Prediction__FDK(spatialDec* self, FIXP_DBL* H11re,
                                      FIXP_DBL* H11im, FIXP_DBL* H12re,
                                      FIXP_DBL* H12im, FIXP_DBL* H21re,
                                      FIXP_DBL* H21im, FIXP_DBL* H22re,
                                      FIXP_DBL* H22im, int ottBoxIndx,
                                      int parameterSetIndx, int resBands) {
  int band;
  FDK_ASSERT((H12im == NULL) && (H22im == NULL)); /* always == 0 */

  for (band = 0; band < self->numParameterBands; band++) {
    int cldIdx = self->ottCLD__FDK[ottBoxIndx][parameterSetIndx][band];
    int iccIdx = self->ottICC__FDK[ottBoxIndx][parameterSetIndx][band];
    int ipdIdx = self->ottIPD__FDK[ottBoxIndx][parameterSetIndx][band];

    param2UMX_Prediction_Core__FDK(
        &H11re[band], (H11im ? &H11im[band] : NULL), &H12re[band], NULL,
        &H21re[band], (H21im ? &H21im[band] : NULL), &H22re[band], NULL, cldIdx,
        iccIdx, ipdIdx, band, self->numOttBandsIPD, resBands);
  }
}

/*******************************************************************************
 Functionname:  initM1andM2
 *******************************************************************************

 Description:

 Arguments:

 Return:

*******************************************************************************/

SACDEC_ERROR initM1andM2(spatialDec* self, int initStatesFlag,
                         int configChanged) {
  SACDEC_ERROR err = MPS_OK;

  self->bOverwriteM1M2prev = (configChanged && !initStatesFlag) ? 1 : 0;

  { self->numM2rows = self->numOutputChannels; }

  if (initStatesFlag) {
    int i, j, k;

    for (i = 0; i < self->numM2rows; i++) {
      for (j = 0; j < self->numVChannels; j++) {
        for (k = 0; k < MAX_PARAMETER_BANDS; k++) {
          self->M2Real__FDK[i][j][k] = FL2FXCONST_DBL(0);
          self->M2RealPrev__FDK[i][j][k] = FL2FXCONST_DBL(0);
        }
      }
    }
  }

  return err;
}