aboutsummaryrefslogtreecommitdiffstats
path: root/fdk-aac/libPCMutils/src/pcmdmx_lib.cpp
blob: fca12ce5f5fbbb2cc4933fb3089df80df96f550a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
/* -----------------------------------------------------------------------------
Software License for The Fraunhofer FDK AAC Codec Library for Android

© Copyright  1995 - 2021 Fraunhofer-Gesellschaft zur Förderung der angewandten
Forschung e.V. All rights reserved.

 1.    INTRODUCTION
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
scheme for digital audio. This FDK AAC Codec software is intended to be used on
a wide variety of Android devices.

AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
general perceptual audio codecs. AAC-ELD is considered the best-performing
full-bandwidth communications codec by independent studies and is widely
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
specifications.

Patent licenses for necessary patent claims for the FDK AAC Codec (including
those of Fraunhofer) may be obtained through Via Licensing
(www.vialicensing.com) or through the respective patent owners individually for
the purpose of encoding or decoding bit streams in products that are compliant
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
Android devices already license these patent claims through Via Licensing or
directly from the patent owners, and therefore FDK AAC Codec software may
already be covered under those patent licenses when it is used for those
licensed purposes only.

Commercially-licensed AAC software libraries, including floating-point versions
with enhanced sound quality, are also available from Fraunhofer. Users are
encouraged to check the Fraunhofer website for additional applications
information and documentation.

2.    COPYRIGHT LICENSE

Redistribution and use in source and binary forms, with or without modification,
are permitted without payment of copyright license fees provided that you
satisfy the following conditions:

You must retain the complete text of this software license in redistributions of
the FDK AAC Codec or your modifications thereto in source code form.

You must retain the complete text of this software license in the documentation
and/or other materials provided with redistributions of the FDK AAC Codec or
your modifications thereto in binary form. You must make available free of
charge copies of the complete source code of the FDK AAC Codec and your
modifications thereto to recipients of copies in binary form.

The name of Fraunhofer may not be used to endorse or promote products derived
from this library without prior written permission.

You may not charge copyright license fees for anyone to use, copy or distribute
the FDK AAC Codec software or your modifications thereto.

Your modified versions of the FDK AAC Codec must carry prominent notices stating
that you changed the software and the date of any change. For modified versions
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
AAC Codec Library for Android."

3.    NO PATENT LICENSE

NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
Fraunhofer provides no warranty of patent non-infringement with respect to this
software.

You may use this FDK AAC Codec software or modifications thereto only for
purposes that are authorized by appropriate patent licenses.

4.    DISCLAIMER

This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
including but not limited to the implied warranties of merchantability and
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
or consequential damages, including but not limited to procurement of substitute
goods or services; loss of use, data, or profits, or business interruption,
however caused and on any theory of liability, whether in contract, strict
liability, or tort (including negligence), arising in any way out of the use of
this software, even if advised of the possibility of such damage.

5.    CONTACT INFORMATION

Fraunhofer Institute for Integrated Circuits IIS
Attention: Audio and Multimedia Departments - FDK AAC LL
Am Wolfsmantel 33
91058 Erlangen, Germany

www.iis.fraunhofer.de/amm
amm-info@iis.fraunhofer.de
----------------------------------------------------------------------------- */

/**************************** PCM utility library ******************************

   Author(s):   Christian Griebel

   Description: Defines functions that perform downmixing or a simple channel
                expansion in the PCM time domain.

*******************************************************************************/

#include "pcmdmx_lib.h"

#include "genericStds.h"
#include "fixpoint_math.h"
#include "FDK_core.h"

/* library version */
#include "version.h"
/* library title */
#define PCMDMX_LIB_TITLE "PCM Downmix Lib"

#define FALSE 0
#define TRUE 1
#define IN 0
#define OUT 1

/* Type definitions: */
#define FIXP_DMX FIXP_SGL
#define FX_DMX2FX_DBL(x) FX_SGL2FX_DBL((FIXP_SGL)(x))
#define FX_DBL2FX_DMX(x) FX_DBL2FX_SGL(x)
#define FL2FXCONST_DMX(x) FL2FXCONST_SGL(x)
#define MAXVAL_DMX MAXVAL_SGL
#define FX_DMX2SHRT(x) ((SHORT)(x))
#define FX_DMX2FL(x) FX_DBL2FL(FX_DMX2FX_DBL(x))

/* Fixed and unique channel group indices.
 * The last group index has to be smaller than ( 4 ). */
#define CH_GROUP_FRONT (0)
#define CH_GROUP_SIDE (1)
#define CH_GROUP_REAR (2)
#define CH_GROUP_LFE (3)

/* Fixed and unique channel plain indices. */
#define CH_PLAIN_NORMAL (0)
#define CH_PLAIN_TOP (1)
#define CH_PLAIN_BOTTOM (2)

/* The ordering of the following fixed channel labels has to be in MPEG-4 style.
 * From the center to the back with left and right channel interleaved (starting
 * with left). The last channel label index has to be smaller than ( 8 ). */
#define CENTER_FRONT_CHANNEL (0) /* C  */
#define LEFT_FRONT_CHANNEL (1)   /* L  */
#define RIGHT_FRONT_CHANNEL (2)  /* R  */
#define LEFT_REAR_CHANNEL \
  (3) /* Lr (aka left back channel) or center back channel */
#define RIGHT_REAR_CHANNEL (4)      /* Rr (aka right back channel) */
#define LOW_FREQUENCY_CHANNEL (5)   /* Lf */
#define LEFT_MULTIPRPS_CHANNEL (6)  /* Left multipurpose channel */
#define RIGHT_MULTIPRPS_CHANNEL (7) /* Right multipurpose channel */

/* 22.2 channel specific fixed channel lables: */
#define LEFT_SIDE_CHANNEL (8)            /* Lss  */
#define RIGHT_SIDE_CHANNEL (9)           /* Rss  */
#define CENTER_REAR_CHANNEL (10)         /* Cs   */
#define CENTER_FRONT_CHANNEL_TOP (11)    /* Cv   */
#define LEFT_FRONT_CHANNEL_TOP (12)      /* Lv   */
#define RIGHT_FRONT_CHANNEL_TOP (13)     /* Rv   */
#define LEFT_SIDE_CHANNEL_TOP (14)       /* Lvss */
#define RIGHT_SIDE_CHANNEL_TOP (15)      /* Rvss */
#define CENTER_SIDE_CHANNEL_TOP (16)     /* Ts   */
#define LEFT_REAR_CHANNEL_TOP (17)       /* Lvr  */
#define RIGHT_REAR_CHANNEL_TOP (18)      /* Rvr  */
#define CENTER_REAR_CHANNEL_TOP (19)     /* Cvr  */
#define CENTER_FRONT_CHANNEL_BOTTOM (20) /* Cb   */
#define LEFT_FRONT_CHANNEL_BOTTOM (21)   /* Lb   */
#define RIGHT_FRONT_CHANNEL_BOTTOM (22)  /* Rb   */
#define LOW_FREQUENCY_CHANNEL_2 (23)     /* LFE2 */

/* More constants */
#define ONE_CHANNEL (1)
#define TWO_CHANNEL (2)
#define SIX_CHANNEL (6)
#define EIGHT_CHANNEL (8)
#define TWENTY_FOUR_CHANNEL (24)

#define PCMDMX_THRESHOLD_MAP_HEAT_1 (0) /* Store only exact matches */
#define PCMDMX_THRESHOLD_MAP_HEAT_2 (20)
#define PCMDMX_THRESHOLD_MAP_HEAT_3 \
  (256) /* Do not assign normal channels to LFE */

#define SP_Z_NRM (0)
#define SP_Z_TOP (2)
#define SP_Z_BOT (-2)
#define SP_Z_LFE (-18)
#define SP_Z_MUL (8) /* Should be smaller than SP_Z_LFE */

typedef struct {
  SCHAR x; /* horizontal position:  center (0), left (-), right (+) */
  SCHAR y; /* deepth position:      front, side, back, position */
  SCHAR z; /* heigth positions:     normal, top, bottom, lfe */
} PCM_DMX_SPEAKER_POSITION;

/* CAUTION: The maximum x-value should be less or equal to
 * PCMDMX_SPKR_POS_X_MAX_WIDTH. */
static const PCM_DMX_SPEAKER_POSITION spkrSlotPos[] = {
    /*  x,  y,  z  */
    {0, 0, SP_Z_NRM},  /* 0  CENTER_FRONT_CHANNEL        */
    {-2, 0, SP_Z_NRM}, /* 1  LEFT_FRONT_CHANNEL          */
    {2, 0, SP_Z_NRM},  /* 2  RIGHT_FRONT_CHANNEL         */
    {-3, 4, SP_Z_NRM}, /* 3  LEFT_REAR_CHANNEL           */
    {3, 4, SP_Z_NRM},  /* 4  RIGHT_REAR_CHANNEL          */
    {0, 0, SP_Z_LFE},  /* 5  LOW_FREQUENCY_CHANNEL       */
    {-2, 2, SP_Z_MUL}, /* 6  LEFT_MULTIPRPS_CHANNEL      */
    {2, 2, SP_Z_MUL}   /* 7  RIGHT_MULTIPRPS_CHANNEL     */
};

/* List of packed channel modes */
typedef enum { /* CH_MODE_<numFrontCh>_<numSideCh>_<numBackCh>_<numLfCh> */
               CH_MODE_UNDEFINED = 0x0000,
               /* 1 channel */
               CH_MODE_1_0_0_0 = 0x0001, /* chCfg 1 */
               /* 2 channels */
               CH_MODE_2_0_0_0 = 0x0002 /* chCfg 2 */
                                        /* 3 channels */
               ,
               CH_MODE_3_0_0_0 = 0x0003, /* chCfg 3 */
               CH_MODE_2_0_1_0 = 0x0102,
               CH_MODE_2_0_0_1 = 0x1002,
               /* 4 channels */
               CH_MODE_3_0_1_0 = 0x0103, /* chCfg 4 */
               CH_MODE_2_0_2_0 = 0x0202,
               CH_MODE_2_0_1_1 = 0x1102,
               CH_MODE_4_0_0_0 = 0x0004,
               /* 5 channels */
               CH_MODE_3_0_2_0 = 0x0203, /* chCfg 5 */
               CH_MODE_2_0_2_1 = 0x1202,
               CH_MODE_3_0_1_1 = 0x1103,
               CH_MODE_3_2_0_0 = 0x0023,
               CH_MODE_5_0_0_0 = 0x0005,
               /* 6 channels */
               CH_MODE_3_0_2_1 = 0x1203, /* chCfg 6 */
               CH_MODE_3_2_0_1 = 0x1023,
               CH_MODE_3_2_1_0 = 0x0123,
               CH_MODE_5_0_1_0 = 0x0105,
               CH_MODE_6_0_0_0 = 0x0006,
               /* 7 channels */
               CH_MODE_2_2_2_1 = 0x1222,
               CH_MODE_3_0_3_1 = 0x1303, /* chCfg 11 */
               CH_MODE_3_2_1_1 = 0x1123,
               CH_MODE_3_2_2_0 = 0x0223,
               CH_MODE_3_0_2_2 = 0x2203,
               CH_MODE_5_0_2_0 = 0x0205,
               CH_MODE_5_0_1_1 = 0x1105,
               CH_MODE_7_0_0_0 = 0x0007,
               /* 8 channels */
               CH_MODE_3_2_2_1 = 0x1223,
               CH_MODE_3_0_4_1 = 0x1403, /* chCfg 12 */
               CH_MODE_5_0_2_1 = 0x1205, /* chCfg 7 + 14 */
               CH_MODE_5_2_1_0 = 0x0125,
               CH_MODE_3_2_1_2 = 0x2123,
               CH_MODE_2_2_2_2 = 0x2222,
               CH_MODE_3_0_3_2 = 0x2303,
               CH_MODE_8_0_0_0 = 0x0008

} PCM_DMX_CHANNEL_MODE;

/* These are the channel configurations linked to
   the number of output channels give by the user: */
static const PCM_DMX_CHANNEL_MODE outChModeTable[(8) + 1] = {
    CH_MODE_UNDEFINED,
    CH_MODE_1_0_0_0, /* 1 channel  */
    CH_MODE_2_0_0_0  /* 2 channels */
    ,
    CH_MODE_3_0_0_0, /* 3 channels */
    CH_MODE_3_0_1_0, /* 4 channels */
    CH_MODE_3_0_2_0, /* 5 channels */
    CH_MODE_3_0_2_1  /* 6 channels */
    ,
    CH_MODE_3_0_3_1, /* 7 channels */
    CH_MODE_3_0_4_1  /* 8 channels */
};

static const FIXP_DMX abMixLvlValueTab[8] = {
    FL2FXCONST_DMX(0.500f), /* scaled by 1 */
    FL2FXCONST_DMX(0.841f), FL2FXCONST_DMX(0.707f), FL2FXCONST_DMX(0.596f),
    FL2FXCONST_DMX(0.500f), FL2FXCONST_DMX(0.422f), FL2FXCONST_DMX(0.355f),
    FL2FXCONST_DMX(0.0f)};

static const FIXP_DMX lfeMixLvlValueTab[16] = {
    /*             value,        scale */
    FL2FXCONST_DMX(0.7905f), /*     2 */
    FL2FXCONST_DMX(0.5000f), /*     2 */
    FL2FXCONST_DMX(0.8395f), /*     1 */
    FL2FXCONST_DMX(0.7065f), /*     1 */
    FL2FXCONST_DMX(0.5945f), /*     1 */
    FL2FXCONST_DMX(0.500f),  /*     1 */
    FL2FXCONST_DMX(0.841f),  /*     0 */
    FL2FXCONST_DMX(0.707f),  /*     0 */
    FL2FXCONST_DMX(0.596f),  /*     0 */
    FL2FXCONST_DMX(0.500f),  /*     0 */
    FL2FXCONST_DMX(0.316f),  /*     0 */
    FL2FXCONST_DMX(0.178f),  /*     0 */
    FL2FXCONST_DMX(0.100f),  /*     0 */
    FL2FXCONST_DMX(0.032f),  /*     0 */
    FL2FXCONST_DMX(0.010f),  /*     0 */
    FL2FXCONST_DMX(0.000f)   /*     0 */
};

/* MPEG matrix mixdown:
    Set 1:  L' = (1 + 2^-0.5 + A )^-1 * [L + C * 2^-0.5 + A * Ls];
            R' = (1 + 2^-0.5 + A )^-1 * [R + C * 2^-0.5 + A * Rs];

    Set 2:  L' = (1 + 2^-0.5 + 2A )^-1 * [L + C * 2^-0.5 - A * (Ls + Rs)];
            R' = (1 + 2^-0.5 + 2A )^-1 * [R + C * 2^-0.5 + A * (Ls + Rs)];

    M = (3 + 2A)^-1 * [L + C + R + A*(Ls + Rs)];
*/
static const FIXP_DMX mpegMixDownIdx2Coef[4] = {
    FL2FXCONST_DMX(0.70710678f), FL2FXCONST_DMX(0.5f),
    FL2FXCONST_DMX(0.35355339f), FL2FXCONST_DMX(0.0f)};

static const FIXP_DMX mpegMixDownIdx2PreFact[3][4] = {
    {/* Set 1: */
     FL2FXCONST_DMX(0.4142135623730950f), FL2FXCONST_DMX(0.4530818393219728f),
     FL2FXCONST_DMX(0.4852813742385703f), FL2FXCONST_DMX(0.5857864376269050f)},
    {/* Set 2: */
     FL2FXCONST_DMX(0.3203772410170407f), FL2FXCONST_DMX(0.3693980625181293f),
     FL2FXCONST_DMX(0.4142135623730950f), FL2FXCONST_DMX(0.5857864376269050f)},
    {/* Mono DMX set: */
     FL2FXCONST_DMX(0.2265409196609864f), FL2FXCONST_DMX(0.25f),
     FL2FXCONST_DMX(0.2697521433898179f), FL2FXCONST_DMX(0.3333333333333333f)}};

#define TYPE_NONE (0x00)
#define TYPE_PCE_DATA (0x01)
#define TYPE_DSE_CLEV_DATA (0x02)
#define TYPE_DSE_SLEV_DATA (0x04)
#define TYPE_DSE_DMIX_AB_DATA (0x08)
#define TYPE_DSE_DMIX_LFE_DATA (0x10)
#define TYPE_DSE_DMX_GAIN_DATA (0x20)
#define TYPE_DSE_DMX_CGL_DATA (0x40)
#define TYPE_DSE_DATA (0x7E)

typedef struct {
  UINT typeFlags;
  /* From DSE */
  UCHAR cLevIdx;
  UCHAR sLevIdx;
  UCHAR dmixIdxA;
  UCHAR dmixIdxB;
  UCHAR dmixIdxLfe;
  UCHAR dmxGainIdx2;
  UCHAR dmxGainIdx5;
  /* From PCE */
  UCHAR matrixMixdownIdx;
  /* Attributes: */
  SCHAR pseudoSurround; /*!< If set to 1 the signal is pseudo surround
                           compatible. The value 0 tells that it is not. If the
                           value is -1 the information is not available.  */
  UINT expiryCount; /*!< Counter to monitor the life time of a meta data set. */

} DMX_BS_META_DATA;

/* Default metadata */
static const DMX_BS_META_DATA dfltMetaData = {0, 2, 2, 2,  2, 15,
                                              0, 0, 0, -1, 0};

/* Dynamic (user) params:
     See the definition of PCMDMX_PARAM for details on the specific fields. */
typedef struct {
  DMX_PROFILE_TYPE dmxProfile; /*!< Linked to DMX_PRFL_STANDARD              */
  UINT expiryFrame;            /*!< Linked to DMX_BS_DATA_EXPIRY_FRAME       */
  DUAL_CHANNEL_MODE dualChannelMode; /*!< Linked to DMX_DUAL_CHANNEL_MODE */
  PSEUDO_SURROUND_MODE
  pseudoSurrMode;          /*!< Linked to DMX_PSEUDO_SURROUND_MODE       */
  SHORT numOutChannelsMin; /*!< Linked to MIN_NUMBER_OF_OUTPUT_CHANNELS  */
  SHORT numOutChannelsMax; /*!< Linked to MAX_NUMBER_OF_OUTPUT_CHANNELS  */
  UCHAR frameDelay;        /*!< Linked to DMX_BS_DATA_DELAY              */

} PCM_DMX_USER_PARAMS;

/* Modules main data structure: */
struct PCM_DMX_INSTANCE {
  /* Metadata */
  DMX_BS_META_DATA bsMetaData[(1) + 1];
  PCM_DMX_USER_PARAMS userParams;

  UCHAR applyProcessing; /*!< Flag to en-/disable modules processing.
                              The max channel limiting is done independently. */
};

/* Memory allocation macro */
C_ALLOC_MEM(PcmDmxInstance, struct PCM_DMX_INSTANCE, 1)

static UINT getSpeakerDistance(PCM_DMX_SPEAKER_POSITION posA,
                               PCM_DMX_SPEAKER_POSITION posB) {
  PCM_DMX_SPEAKER_POSITION diff;

  diff.x = posA.x - posB.x;
  diff.y = posA.y - posB.y;
  diff.z = posA.z - posB.z;

  return ((diff.x * diff.x) + (diff.y * diff.y) + (diff.z * diff.z));
}

static PCM_DMX_SPEAKER_POSITION getSpeakerPos(AUDIO_CHANNEL_TYPE chType,
                                              UCHAR chIndex, UCHAR numChInGrp) {
#define PCMDMX_SPKR_POS_X_MAX_WIDTH (3)
#define PCMDMX_SPKR_POS_Y_SPREAD (2)
#define PCMDMX_SPKR_POS_Z_SPREAD (2)

  PCM_DMX_SPEAKER_POSITION spkrPos = {0, 0, 0};
  AUDIO_CHANNEL_TYPE chGrp = (AUDIO_CHANNEL_TYPE)(chType & 0x0F);
  unsigned fHasCenter = numChInGrp & 0x1;
  unsigned chGrpWidth = numChInGrp >> 1;
  unsigned fIsCenter = 0;
  unsigned fIsLfe = (chType == ACT_LFE) ? 1 : 0;
  int offset = 0;

  FDK_ASSERT(chIndex < numChInGrp);

  if ((chGrp == ACT_FRONT) && fHasCenter) {
    if (chIndex == 0) fIsCenter = 1;
    chIndex = (UCHAR)fMax(0, chIndex - 1);
  } else if (fHasCenter && (chIndex == numChInGrp - 1)) {
    fIsCenter = 1;
  }
  /* now all even indices are left (-) */
  if (!fIsCenter) {
    offset = chIndex >> 1;
    if ((chGrp > ACT_FRONT) && (chType != ACT_SIDE) && !fIsLfe) {
      /* the higher the index the lower the distance to the center position */
      offset = chGrpWidth - fHasCenter - offset;
    }
    if ((chIndex & 0x1) == 0) { /* even */
      offset = -(offset + 1);
    } else {
      offset += 1;
    }
  }
  /* apply the offset */
  if (chType == ACT_SIDE) {
    spkrPos.x = (offset < 0) ? -PCMDMX_SPKR_POS_X_MAX_WIDTH
                             : PCMDMX_SPKR_POS_X_MAX_WIDTH;
    spkrPos.y = /* 1x */ PCMDMX_SPKR_POS_Y_SPREAD + (SCHAR)fAbs(offset) - 1;
    spkrPos.z = 0;
  } else {
    unsigned spread =
        ((chGrpWidth == 1) && (!fIsLfe)) ? PCMDMX_SPKR_POS_X_MAX_WIDTH - 1 : 1;
    spkrPos.x = (SCHAR)offset * (SCHAR)spread;
    if (fIsLfe) {
      spkrPos.y = 0;
      spkrPos.z = SP_Z_LFE;
    } else {
      spkrPos.y = (SCHAR)fMax((SCHAR)chGrp - 1, 0) * PCMDMX_SPKR_POS_Y_SPREAD;
      spkrPos.z = (SCHAR)chType >> 4;
      if (spkrPos.z == 2) { /* ACT_BOTTOM */
        spkrPos.z = -1;
      }
      spkrPos.z *= PCMDMX_SPKR_POS_Z_SPREAD;
    }
  }
  return spkrPos;
}

/** Return the channel mode of a given horizontal channel plain (normal, top,
 *bottom) for a given channel configuration. NOTE: This function shall get
 *obsolete once the channel mode has been changed to be nonambiguous.
 * @param [in] Index of the requested channel plain.
 * @param [in] The packed channel mode for the complete channel configuration
 *(all plains).
 * @param [in] The MPEG-4 channel configuration index which is necessary in
 *cases where the (packed) channel mode is ambiguous.
 * @returns Returns the packed channel mode of the requested channel plain.
 **/
static PCM_DMX_CHANNEL_MODE getChMode4Plain(
    const int plainIndex, const PCM_DMX_CHANNEL_MODE totChMode,
    const int chCfg) {
  PCM_DMX_CHANNEL_MODE plainChMode = totChMode;

  switch (totChMode) {
    case CH_MODE_5_0_2_1:
      if (chCfg == 14) {
        switch (plainIndex) {
          case CH_PLAIN_BOTTOM:
            plainChMode = (PCM_DMX_CHANNEL_MODE)0x0000;
            break;
          case CH_PLAIN_TOP:
            plainChMode = CH_MODE_2_0_0_0;
            break;
          case CH_PLAIN_NORMAL:
          default:
            plainChMode = CH_MODE_3_0_2_1;
            break;
        }
      }
      break;
    default:
      break;
  }

  return plainChMode;
}

/** Validates the channel indices of all channels present in the bitstream.
 * The channel indices have to be consecutive and unique for each audio channel
 *type.
 * @param [in] The total number of channels of the given configuration.
 * @param [in] The total number of channels of the current audio channel type of
 *the given configuration.
 * @param [in] Audio channel type to be examined.
 * @param [in] Array holding the corresponding channel types for each channel.
 * @param [in] Array holding the corresponding channel type indices for each
 *channel.
 * @returns Returns 1 on success, returns 0 on error.
 **/
static UINT validateIndices(UINT numChannels, UINT numChannelsPlaneAndGrp,
                            AUDIO_CHANNEL_TYPE aChType,
                            const AUDIO_CHANNEL_TYPE channelType[],
                            const UCHAR channelIndices[]) {
  for (UINT reqValue = 0; reqValue < numChannelsPlaneAndGrp; reqValue++) {
    int found = FALSE;
    for (UINT i = 0; i < numChannels; i++) {
      if (channelType[i] == aChType) {
        if (channelIndices[i] == reqValue) {
          if (found == TRUE) {
            return 0; /* Found channel index a second time */
          } else {
            found = TRUE; /* Found channel index */
          }
        }
      }
    }
    if (found == FALSE) {
      return 0; /* Did not find channel index */
    }
  }
  return 1; /* Successfully validated channel indices */
}

/** Evaluate a given channel configuration and extract a packed channel mode. In
 *addition the function generates a channel offset table for the mapping to the
 *internal representation. This function is the inverse to the
 *getChannelDescription() routine.
 * @param [in] The total number of channels of the given configuration.
 * @param [in] Array holding the corresponding channel types for each channel.
 * @param [in] Array holding the corresponding channel type indices for each
 *channel.
 * @param [out] Array where the buffer offsets for each channel are stored into.
 * @param [out] The generated packed channel mode that represents the given
 *input configuration.
 * @returns Returns an error code.
 **/
static PCMDMX_ERROR getChannelMode(
    const UINT numChannels,                 /* in */
    const AUDIO_CHANNEL_TYPE channelType[], /* in */
    UCHAR channelIndices[],                 /* in */
    UCHAR offsetTable[(8)],                 /* out */
    PCM_DMX_CHANNEL_MODE *chMode            /* out */
) {
  UCHAR numCh[(3)][(4)];
  UCHAR mapped[(8)];
  PCM_DMX_SPEAKER_POSITION spkrPos[(8)];
  PCMDMX_ERROR err = PCMDMX_OK;
  unsigned ch, numMappedInChs = 0;
  unsigned startSlot;
  unsigned stopSlot = LOW_FREQUENCY_CHANNEL;

  FDK_ASSERT(channelType != NULL);
  FDK_ASSERT(channelIndices != NULL);
  FDK_ASSERT(offsetTable != NULL);
  FDK_ASSERT(chMode != NULL);

  /* For details see ISO/IEC 13818-7:2005(E), 8.5.3 Channel configuration */
  FDKmemclear(numCh, (3) * (4) * sizeof(UCHAR));
  FDKmemclear(mapped, (8) * sizeof(UCHAR));
  FDKmemclear(spkrPos, (8) * sizeof(PCM_DMX_SPEAKER_POSITION));
  /* Init output */
  FDKmemset(offsetTable, 255, (8) * sizeof(UCHAR));
  *chMode = CH_MODE_UNDEFINED;

  /* Determine how many channels are assigned to each channels each group: */
  for (ch = 0; ch < numChannels; ch += 1) {
    unsigned chGrp = fMax(
        (channelType[ch] & 0x0F) - 1,
        0); /* Assign all undefined channels (ACT_NONE) to front channels. */
    numCh[channelType[ch] >> 4][chGrp] += 1;
  }

  {
    int chGrp;
    /* Sanity check on the indices */
    for (chGrp = 0; chGrp < (4); chGrp += 1) {
      int plane;
      for (plane = 0; plane < (3); plane += 1) {
        if (numCh[plane][chGrp] == 0) continue;
        AUDIO_CHANNEL_TYPE aChType =
            (AUDIO_CHANNEL_TYPE)((plane << 4) | ((chGrp + 1) & 0xF));
        if (!validateIndices(numChannels, numCh[plane][chGrp], aChType,
                             channelType, channelIndices)) {
          unsigned idxCnt = 0;
          for (ch = 0; ch < numChannels; ch += 1) {
            if (channelType[ch] == aChType) {
              channelIndices[ch] = idxCnt++;
            }
          }
          err = PCMDMX_INVALID_CH_CONFIG;
        }
      }
    }
  }
  /* Mapping HEAT 1:
   *   Determine the speaker position of each input channel and map it to a
   * internal slot if it matches exactly (with zero distance). */
  for (ch = 0; ch < numChannels; ch += 1) {
    UINT mapDist = (unsigned)-1;
    unsigned mapCh, mapPos = (unsigned)-1;
    unsigned chGrp = fMax(
        (channelType[ch] & 0x0F) - 1,
        0); /* Assign all undefined channels (ACT_NONE) to front channels. */

    spkrPos[ch] = getSpeakerPos(channelType[ch], channelIndices[ch],
                                numCh[channelType[ch] >> 4][chGrp]);

    for (mapCh = 0; mapCh <= stopSlot; mapCh += 1) {
      if (offsetTable[mapCh] == 255) {
        UINT dist = getSpeakerDistance(spkrPos[ch], spkrSlotPos[mapCh]);
        if (dist < mapDist) {
          mapPos = mapCh;
          mapDist = dist;
        }
      }
    }
    if (mapDist <= PCMDMX_THRESHOLD_MAP_HEAT_1) {
      offsetTable[mapPos] = (UCHAR)ch;
      mapped[ch] = 1;
      numMappedInChs += 1;
    }
  }

  /* Mapping HEAT 2:
   *   Go through the unmapped input channels and assign them to the internal
   * slots that matches best (least distance). But assign center channels to
   * center slots only. */
  startSlot =
      ((numCh[CH_PLAIN_NORMAL][CH_GROUP_FRONT] & 0x1) || (numChannels >= (8)))
          ? 0
          : 1;
  for (ch = 0; ch < (unsigned)numChannels; ch += 1) {
    if (!mapped[ch]) {
      UINT mapDist = (unsigned)-1;
      unsigned mapCh, mapPos = (unsigned)-1;

      for (mapCh = startSlot; mapCh <= stopSlot; mapCh += 1) {
        if (offsetTable[mapCh] == 255) {
          UINT dist = getSpeakerDistance(spkrPos[ch], spkrSlotPos[mapCh]);
          if (dist < mapDist) {
            mapPos = mapCh;
            mapDist = dist;
          }
        }
      }
      if ((mapPos <= stopSlot) && (mapDist < PCMDMX_THRESHOLD_MAP_HEAT_2) &&
          (((spkrPos[ch].x != 0) && (spkrSlotPos[mapPos].x != 0)) /* XOR */
           || ((spkrPos[ch].x == 0) &&
               (spkrSlotPos[mapPos].x ==
                0)))) { /* Assign center channels to center slots only. */
        offsetTable[mapPos] = (UCHAR)ch;
        mapped[ch] = 1;
        numMappedInChs += 1;
      }
    }
  }

  /* Mapping HEAT 3:
   *   Assign the rest by searching for the nearest input channel for each
   * internal slot. */
  for (ch = startSlot; (ch < (8)) && (numMappedInChs < numChannels); ch += 1) {
    if (offsetTable[ch] == 255) {
      UINT mapDist = (unsigned)-1;
      unsigned mapCh, mapPos = (unsigned)-1;

      for (mapCh = 0; mapCh < (unsigned)numChannels; mapCh += 1) {
        if (!mapped[mapCh]) {
          UINT dist = getSpeakerDistance(spkrPos[mapCh], spkrSlotPos[ch]);
          if (dist < mapDist) {
            mapPos = mapCh;
            mapDist = dist;
          }
        }
      }
      if (mapDist < PCMDMX_THRESHOLD_MAP_HEAT_3) {
        offsetTable[ch] = (UCHAR)mapPos;
        mapped[mapPos] = 1;
        numMappedInChs += 1;
        if ((spkrPos[mapPos].x == 0) && (spkrSlotPos[ch].x != 0) &&
            (numChannels <
             (8))) { /* Skip the paired slot if we assigned a center channel. */
          ch += 1;
        }
      }
    }
  }

  /* Finaly compose the channel mode */
  for (ch = 0; ch < (4); ch += 1) {
    int plane, numChInGrp = 0;
    for (plane = 0; plane < (3); plane += 1) {
      numChInGrp += numCh[plane][ch];
    }
    *chMode = (PCM_DMX_CHANNEL_MODE)(*chMode | (numChInGrp << (ch * 4)));
  }

  return err;
}

/** Generate a channel offset table and complete channel description for a given
 *(packed) channel mode. This function is the inverse to the getChannelMode()
 *routine but does not support weird channel configurations.
 * @param [in] The packed channel mode of the configuration to be processed.
 * @param [in] Array containing the channel mapping to be used (From MPEG PCE
 *ordering to whatever is required).
 * @param [out] Array where corresponding channel types for each channels are
 *stored into.
 * @param [out] Array where corresponding channel type indices for each output
 *channel are stored into.
 * @param [out] Array where the buffer offsets for each channel are stored into.
 * @returns None.
 **/
static void getChannelDescription(
    const PCM_DMX_CHANNEL_MODE chMode,         /* in */
    const FDK_channelMapDescr *const mapDescr, /* in */
    AUDIO_CHANNEL_TYPE channelType[],          /* out */
    UCHAR channelIndices[],                    /* out */
    UCHAR offsetTable[(8)]                     /* out */
) {
  int grpIdx, plainIdx, numPlains = 1, numTotalChannels = 0;
  int chCfg, ch = 0;

  FDK_ASSERT(channelType != NULL);
  FDK_ASSERT(channelIndices != NULL);
  FDK_ASSERT(mapDescr != NULL);
  FDK_ASSERT(offsetTable != NULL);

  /* Init output arrays */
  FDKmemclear(channelType, (8) * sizeof(AUDIO_CHANNEL_TYPE));
  FDKmemclear(channelIndices, (8) * sizeof(UCHAR));
  FDKmemset(offsetTable, 255, (8) * sizeof(UCHAR));

  /* Summerize to get the total number of channels */
  for (grpIdx = 0; grpIdx < (4); grpIdx += 1) {
    numTotalChannels += (chMode >> (grpIdx * 4)) & 0xF;
  }

  /* Get the appropriate channel map */
  switch (chMode) {
    case CH_MODE_1_0_0_0:
    case CH_MODE_2_0_0_0:
    case CH_MODE_3_0_0_0:
    case CH_MODE_3_0_1_0:
    case CH_MODE_3_0_2_0:
    case CH_MODE_3_0_2_1:
      chCfg = numTotalChannels;
      break;
    case CH_MODE_3_0_3_1:
      chCfg = 11;
      break;
    case CH_MODE_3_0_4_1:
      chCfg = 12;
      break;
    case CH_MODE_5_0_2_1:
      chCfg = 7;
      break;
    default:
      /* fallback */
      chCfg = 0;
      break;
  }

  /* Compose channel offset table */

  for (plainIdx = 0; plainIdx < numPlains; plainIdx += 1) {
    PCM_DMX_CHANNEL_MODE plainChMode;
    UCHAR numChInGrp[(4)];

    plainChMode = getChMode4Plain(plainIdx, chMode, chCfg);

    /* Extract the number of channels per group */
    numChInGrp[CH_GROUP_FRONT] = plainChMode & 0xF;
    numChInGrp[CH_GROUP_SIDE] = (plainChMode >> 4) & 0xF;
    numChInGrp[CH_GROUP_REAR] = (plainChMode >> 8) & 0xF;
    numChInGrp[CH_GROUP_LFE] = (plainChMode >> 12) & 0xF;

    /* Non-symmetric channels */
    if ((numChInGrp[CH_GROUP_FRONT] & 0x1) && (plainIdx == CH_PLAIN_NORMAL)) {
      /* Odd number of front channels -> we have a center channel.
         In MPEG-4 the center has the index 0. */
      int mappedIdx = FDK_chMapDescr_getMapValue(mapDescr, (UCHAR)ch, chCfg);
      offsetTable[CENTER_FRONT_CHANNEL] = (UCHAR)mappedIdx;
      channelType[mappedIdx] = ACT_FRONT;
      channelIndices[mappedIdx] = 0;
      ch += 1;
    }

    for (grpIdx = 0; grpIdx < (4); grpIdx += 1) {
      AUDIO_CHANNEL_TYPE type = ACT_NONE;
      int chMapPos = 0, maxChannels = 0;
      int chIdx = 0; /* Index of channel within the specific group */

      switch (grpIdx) {
        case CH_GROUP_FRONT:
          type = (AUDIO_CHANNEL_TYPE)((plainIdx << 4) | ACT_FRONT);
          switch (plainIdx) {
            default:
              chMapPos = LEFT_FRONT_CHANNEL;
              chIdx = numChInGrp[grpIdx] & 0x1;
              break;
          }
          maxChannels = 3;
          break;
        case CH_GROUP_SIDE:
          /* Always map side channels to the multipurpose group. */
          type = (AUDIO_CHANNEL_TYPE)((plainIdx << 4) | ACT_SIDE);
          if (plainIdx == CH_PLAIN_TOP) {
            chMapPos = LEFT_SIDE_CHANNEL_TOP;
            maxChannels = 3;
          } else {
            chMapPos = LEFT_MULTIPRPS_CHANNEL;
            maxChannels = 2;
          }
          break;
        case CH_GROUP_REAR:
          type = (AUDIO_CHANNEL_TYPE)((plainIdx << 4) | ACT_BACK);
          if (plainIdx == CH_PLAIN_TOP) {
            chMapPos = LEFT_REAR_CHANNEL_TOP;
            maxChannels = 3;
          } else {
            chMapPos = LEFT_REAR_CHANNEL;
            maxChannels = 2;
          }
          break;
        case CH_GROUP_LFE:
          if (plainIdx == CH_PLAIN_NORMAL) {
            type = ACT_LFE;
            chMapPos = LOW_FREQUENCY_CHANNEL;
            maxChannels = 1;
          }
          break;
        default:
          break;
      }

      /* Map all channels in this group */
      for (; chIdx < numChInGrp[grpIdx]; chIdx += 1) {
        int mappedIdx = FDK_chMapDescr_getMapValue(mapDescr, (UCHAR)ch, chCfg);
        if ((chIdx == maxChannels) || (offsetTable[chMapPos] < 255)) {
          /* No space left in this channel group! */
          if (offsetTable[LEFT_MULTIPRPS_CHANNEL] ==
              255) { /* Use the multipurpose group: */
            chMapPos = LEFT_MULTIPRPS_CHANNEL;
          } else {
            FDK_ASSERT(0);
          }
        }
        offsetTable[chMapPos] = (UCHAR)mappedIdx;
        channelType[mappedIdx] = type;
        channelIndices[mappedIdx] = (UCHAR)chIdx;
        chMapPos += 1;
        ch += 1;
      }
    }
  }
}

/** Private helper function for downmix matrix manipulation that initializes
 *  one row in a given downmix matrix (corresponding to one output channel).
 * @param [inout] Pointer to fixed-point parts of the downmix matrix.
 * @param [inout] Pointer to scale factor matrix associated to the downmix
 *factors.
 * @param [in]    Index of channel (row) to be initialized.
 * @returns       Nothing to return.
 **/
static void dmxInitChannel(FIXP_DMX mixFactors[(8)][(8)],
                           INT mixScales[(8)][(8)], const unsigned int outCh) {
  unsigned int inCh;
  for (inCh = 0; inCh < (8); inCh += 1) {
    if (inCh == outCh) {
      mixFactors[outCh][inCh] = FL2FXCONST_DMX(0.5f);
      mixScales[outCh][inCh] = 1;
    } else {
      mixFactors[outCh][inCh] = FL2FXCONST_DMX(0.0f);
      mixScales[outCh][inCh] = 0;
    }
  }
}

/** Private helper function for downmix matrix manipulation that does a reset
 *  of one row in a given downmix matrix (corresponding to one output channel).
 * @param [inout] Pointer to fixed-point parts of the downmix matrix.
 * @param [inout] Pointer to scale factor matrix associated to the downmix
 *factors.
 * @param [in]    Index of channel (row) to be cleared/reset.
 * @returns       Nothing to return.
 **/
static void dmxClearChannel(FIXP_DMX mixFactors[(8)][(8)],
                            INT mixScales[(8)][(8)], const unsigned int outCh) {
  FDK_ASSERT((outCh >= 0) && (outCh < (8)));
  FDKmemclear(&mixFactors[outCh], (8) * sizeof(FIXP_DMX));
  FDKmemclear(&mixScales[outCh], (8) * sizeof(INT));
}

/** Private helper function for downmix matrix manipulation that applies a
 *source channel (row) scaled by a given mix factor to a destination channel
 *(row) in a given downmix matrix. Existing mix factors of the destination
 *channel (row) will get overwritten.
 * @param [inout] Pointer to fixed-point parts of the downmix matrix.
 * @param [inout] Pointer to scale factor matrix associated to the downmix
 *factors.
 * @param [in]    Index of source channel (row).
 * @param [in]    Index of destination channel (row).
 * @param [in]    Fixed-point part of mix factor to be applied.
 * @param [in]    Scale factor of mix factor to be applied.
 * @returns       Nothing to return.
 **/
static void dmxSetChannel(FIXP_DMX mixFactors[(8)][(8)],
                          INT mixScales[(8)][(8)], const unsigned int dstCh,
                          const unsigned int srcCh, const FIXP_DMX factor,
                          const INT scale) {
  int ch;
  for (ch = 0; ch < (8); ch += 1) {
    if (mixFactors[srcCh][ch] != (FIXP_DMX)0) {
      mixFactors[dstCh][ch] =
          FX_DBL2FX_DMX(fMult(mixFactors[srcCh][ch], factor));
      mixScales[dstCh][ch] = mixScales[srcCh][ch] + scale;
    }
  }
}

/** Private helper function for downmix matrix manipulation that adds a source
 *channel (row) scaled by a given mix factor to a destination channel (row) in a
 *given downmix matrix.
 * @param [inout] Pointer to fixed-point parts of the downmix matrix.
 * @param [inout] Pointer to scale factor matrix associated to the downmix
 *factors.
 * @param [in]    Index of source channel (row).
 * @param [in]    Index of destination channel (row).
 * @param [in]    Fixed-point part of mix factor to be applied.
 * @param [in]    Scale factor of mix factor to be applied.
 * @returns       Nothing to return.
 **/
static void dmxAddChannel(FIXP_DMX mixFactors[(8)][(8)],
                          INT mixScales[(8)][(8)], const unsigned int dstCh,
                          const unsigned int srcCh, const FIXP_DMX factor,
                          const INT scale) {
  int ch;
  for (ch = 0; ch < (8); ch += 1) {
    FIXP_DBL addFact = fMult(mixFactors[srcCh][ch], factor);
    if (addFact != (FIXP_DMX)0) {
      INT newScale = mixScales[srcCh][ch] + scale;
      if (mixFactors[dstCh][ch] != (FIXP_DMX)0) {
        if (newScale > mixScales[dstCh][ch]) {
          mixFactors[dstCh][ch] >>= newScale - mixScales[dstCh][ch];
        } else {
          addFact >>= mixScales[dstCh][ch] - newScale;
          newScale = mixScales[dstCh][ch];
        }
      }
      mixFactors[dstCh][ch] += FX_DBL2FX_DMX(addFact);
      mixScales[dstCh][ch] = newScale;
    }
  }
}

/** Private function that creates a downmix factor matrix depending on the input
 and output
 *  configuration, the user parameters as well as the given metadata. This
 function is the modules
 *  brain and hold all downmix algorithms.
 * @param [in]  Flag that indicates if inChMode holds a real (packed) channel
 mode or has been converted to a MPEG-4 channel configuration index.
 * @param [in]  Dependent on the inModeIsCfg flag this field hands in a (packed)
 channel mode or the corresponding MPEG-4 channel configuration index.of the
 input configuration.
 * @param [in]  The (packed) channel mode of the output configuration.
 * @param [in]  Pointer to structure holding all current user parameter.
 * @param [in]  Pointer to field holding all current meta data.
 * @param [out] Pointer to fixed-point parts of the downmix matrix. Normalized
 to one scale factor.
 * @param [out] The common scale factor of the downmix matrix.
 * @returns     An error code.
 **/
static PCMDMX_ERROR getMixFactors(const UCHAR inModeIsCfg,
                                  PCM_DMX_CHANNEL_MODE inChMode,
                                  const PCM_DMX_CHANNEL_MODE outChMode,
                                  const PCM_DMX_USER_PARAMS *pParams,
                                  const DMX_BS_META_DATA *pMetaData,
                                  FIXP_DMX mixFactors[(8)][(8)],
                                  INT *pOutScale) {
  PCMDMX_ERROR err = PCMDMX_OK;
  INT mixScales[(8)][(8)];
  INT maxScale = 0;
  int numInChannel;
  int numOutChannel;
  int dmxMethod;
  unsigned int outCh, inChCfg = 0;
  unsigned int valid[(8)] = {0};

  FDK_ASSERT(pMetaData != NULL);
  FDK_ASSERT(mixFactors != NULL);
  /* Check on a supported output configuration.
     Add new one only after extensive testing! */
  if (!((outChMode == CH_MODE_1_0_0_0) || (outChMode == CH_MODE_2_0_0_0) ||
        (outChMode == CH_MODE_3_0_2_1) || (outChMode == CH_MODE_3_0_4_1) ||
        (outChMode == CH_MODE_5_0_2_1))) {
    FDK_ASSERT(0);
  }

  if (inModeIsCfg) {
    /* Convert channel config to channel mode: */
    inChCfg = (unsigned int)inChMode;
    switch (inChCfg) {
      case 1:
      case 2:
      case 3:
      case 4:
      case 5:
      case 6:
        inChMode = outChModeTable[inChCfg];
        break;
      case 11:
        inChMode = CH_MODE_3_0_3_1;
        break;
      case 12:
        inChMode = CH_MODE_3_0_4_1;
        break;
      case 7:
      case 14:
        inChMode = CH_MODE_5_0_2_1;
        break;
      default:
        FDK_ASSERT(0);
    }
  }

  /* Extract the total number of input channels */
  numInChannel = (inChMode & 0xF) + ((inChMode >> 4) & 0xF) +
                 ((inChMode >> 8) & 0xF) + ((inChMode >> 12) & 0xF);
  /* Extract the total number of output channels */
  numOutChannel = (outChMode & 0xF) + ((outChMode >> 4) & 0xF) +
                  ((outChMode >> 8) & 0xF) + ((outChMode >> 12) & 0xF);

  /* MPEG ammendment 4 aka ETSI metadata and fallback mode: */

  /* Create identity DMX matrix: */
  for (outCh = 0; outCh < (8); outCh += 1) {
    dmxInitChannel(mixFactors, mixScales, outCh);
  }
  if (((inChMode >> 12) & 0xF) == 0) {
    /* Clear empty or wrongly mapped input channel */
    dmxClearChannel(mixFactors, mixScales, LOW_FREQUENCY_CHANNEL);
  }

  /* FIRST STAGE: */
  if (numInChannel > SIX_CHANNEL) { /* Always use MPEG equations either with
                                       meta data or with default values. */
    FIXP_DMX dMixFactA, dMixFactB;
    INT dMixScaleA, dMixScaleB;
    int isValidCfg = TRUE;

    /* Get factors from meta data */
    dMixFactA = abMixLvlValueTab[pMetaData->dmixIdxA];
    dMixScaleA = (pMetaData->dmixIdxA == 0) ? 1 : 0;
    dMixFactB = abMixLvlValueTab[pMetaData->dmixIdxB];
    dMixScaleB = (pMetaData->dmixIdxB == 0) ? 1 : 0;

    /* Check if input is in the list of supported configurations */
    switch (inChMode) {
      case CH_MODE_3_2_1_1: /* chCfg 11 but with side channels */
      case CH_MODE_3_2_1_0:
        isValidCfg = FALSE;
        err = PCMDMX_INVALID_MODE;
        FDK_FALLTHROUGH;
      case CH_MODE_3_0_3_1: /* chCfg 11 */
        /* 6.1ch:  C' = C;  L' = L;  R' = R;  LFE' = LFE;
                   Ls' = Ls*dmix_a_idx + Cs*dmix_b_idx;
                   Rs' = Rs*dmix_a_idx + Cs*dmix_b_idx; */
        dmxClearChannel(
            mixFactors, mixScales,
            RIGHT_MULTIPRPS_CHANNEL); /* clear empty input channel */
        dmxSetChannel(mixFactors, mixScales, LEFT_REAR_CHANNEL,
                      LEFT_REAR_CHANNEL, dMixFactA, dMixScaleA);
        dmxSetChannel(mixFactors, mixScales, LEFT_REAR_CHANNEL,
                      LEFT_MULTIPRPS_CHANNEL, dMixFactB, dMixScaleB);
        dmxSetChannel(mixFactors, mixScales, RIGHT_REAR_CHANNEL,
                      RIGHT_REAR_CHANNEL, dMixFactA, dMixScaleA);
        dmxSetChannel(mixFactors, mixScales, RIGHT_REAR_CHANNEL,
                      LEFT_MULTIPRPS_CHANNEL, dMixFactB, dMixScaleB);
        break;
      case CH_MODE_3_0_4_1: /* chCfg 12 */
        /* 7.1ch Surround Back:  C' = C;  L' = L;  R' = R;  LFE' = LFE;
                                 Ls' = Ls*dmix_a_idx + Lsr*dmix_b_idx;
                                 Rs' = Rs*dmix_a_idx + Rsr*dmix_b_idx; */
        dmxSetChannel(mixFactors, mixScales, LEFT_REAR_CHANNEL,
                      LEFT_REAR_CHANNEL, dMixFactA, dMixScaleA);
        dmxSetChannel(mixFactors, mixScales, LEFT_REAR_CHANNEL,
                      LEFT_MULTIPRPS_CHANNEL, dMixFactB, dMixScaleB);
        dmxSetChannel(mixFactors, mixScales, RIGHT_REAR_CHANNEL,
                      RIGHT_REAR_CHANNEL, dMixFactA, dMixScaleA);
        dmxSetChannel(mixFactors, mixScales, RIGHT_REAR_CHANNEL,
                      RIGHT_MULTIPRPS_CHANNEL, dMixFactB, dMixScaleB);
        break;
      case CH_MODE_5_0_1_0:
      case CH_MODE_5_0_1_1:
        dmxClearChannel(mixFactors, mixScales,
                        RIGHT_REAR_CHANNEL); /* clear empty input channel */
        dmxSetChannel(mixFactors, mixScales, RIGHT_REAR_CHANNEL,
                      LEFT_REAR_CHANNEL, FL2FXCONST_DMX(0.5f), 1);
        dmxSetChannel(mixFactors, mixScales, LEFT_REAR_CHANNEL,
                      LEFT_REAR_CHANNEL, FL2FXCONST_DMX(0.5f), 1);
        FDK_FALLTHROUGH;
      case CH_MODE_5_2_1_0:
        isValidCfg = FALSE;
        err = PCMDMX_INVALID_MODE;
        FDK_FALLTHROUGH;
      case CH_MODE_5_0_2_1: /* chCfg 7 || 14 */
        if (inChCfg == 14) {
          /* 7.1ch Front Height:  C' = C;  Ls' = Ls;  Rs' = Rs;  LFE' = LFE;
                                  L' = L*dmix_a_idx + Lv*dmix_b_idx;
                                  R' = R*dmix_a_idx + Rv*dmix_b_idx; */
          dmxSetChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL,
                        LEFT_FRONT_CHANNEL, dMixFactA, dMixScaleA);
          dmxSetChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL,
                        LEFT_MULTIPRPS_CHANNEL, dMixFactB, dMixScaleB);
          dmxSetChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL,
                        RIGHT_FRONT_CHANNEL, dMixFactA, dMixScaleA);
          dmxSetChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL,
                        RIGHT_MULTIPRPS_CHANNEL, dMixFactB, dMixScaleB);
        } else {
          /* 7.1ch Front:  Ls' = Ls;  Rs' = Rs;  LFE' = LFE;
                           C' = C + (Lc+Rc)*dmix_a_idx;
                           L' = L + Lc*dmix_b_idx;
                           R' = R + Rc*dmix_b_idx; */
          dmxSetChannel(mixFactors, mixScales, CENTER_FRONT_CHANNEL,
                        LEFT_MULTIPRPS_CHANNEL, dMixFactA, dMixScaleA);
          dmxSetChannel(mixFactors, mixScales, CENTER_FRONT_CHANNEL,
                        RIGHT_MULTIPRPS_CHANNEL, dMixFactA, dMixScaleA);
          dmxSetChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL,
                        LEFT_MULTIPRPS_CHANNEL, dMixFactB, dMixScaleB);
          dmxSetChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL,
                        LEFT_FRONT_CHANNEL, FL2FXCONST_DMX(0.5f), 1);
          dmxSetChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL,
                        RIGHT_MULTIPRPS_CHANNEL, dMixFactB, dMixScaleB);
          dmxSetChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL,
                        RIGHT_FRONT_CHANNEL, FL2FXCONST_DMX(0.5f), 1);
        }
        break;
      default:
        /* Nothing to do. Just use the identity matrix. */
        isValidCfg = FALSE;
        err = PCMDMX_INVALID_MODE;
        break;
    }

    /* Add additional DMX gain */
    if ((isValidCfg == TRUE) &&
        (pMetaData->dmxGainIdx5 != 0)) { /* Apply DMX gain 5 */
      FIXP_DMX dmxGain;
      INT dmxScale;
      INT sign = (pMetaData->dmxGainIdx5 & 0x40) ? -1 : 1;
      INT val = pMetaData->dmxGainIdx5 & 0x3F;

      /* 10^(dmx_gain_5/80) */
      dmxGain = FX_DBL2FX_DMX(
          fLdPow(FL2FXCONST_DBL(0.830482023721841f), 2, /* log2(10) */
                 (FIXP_DBL)(sign * val * (LONG)FL2FXCONST_DBL(0.0125f)), 0,
                 &dmxScale));
      /* Currently only positive scale factors supported! */
      if (dmxScale < 0) {
        dmxGain >>= -dmxScale;
        dmxScale = 0;
      }

      dmxSetChannel(mixFactors, mixScales, CENTER_FRONT_CHANNEL,
                    CENTER_FRONT_CHANNEL, dmxGain, dmxScale);
      dmxSetChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL,
                    LEFT_FRONT_CHANNEL, dmxGain, dmxScale);
      dmxSetChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL,
                    RIGHT_FRONT_CHANNEL, dmxGain, dmxScale);
      dmxSetChannel(mixFactors, mixScales, LEFT_REAR_CHANNEL, LEFT_REAR_CHANNEL,
                    dmxGain, dmxScale);
      dmxSetChannel(mixFactors, mixScales, RIGHT_REAR_CHANNEL,
                    RIGHT_REAR_CHANNEL, dmxGain, dmxScale);
      dmxSetChannel(mixFactors, mixScales, LOW_FREQUENCY_CHANNEL,
                    LOW_FREQUENCY_CHANNEL, dmxGain, dmxScale);
    }

    /* Mark the output channels */
    valid[CENTER_FRONT_CHANNEL] = 1;
    valid[LEFT_FRONT_CHANNEL] = 1;
    valid[RIGHT_FRONT_CHANNEL] = 1;
    valid[LEFT_REAR_CHANNEL] = 1;
    valid[RIGHT_REAR_CHANNEL] = 1;
    valid[LOW_FREQUENCY_CHANNEL] = 1;

    /* Update channel mode for the next stage */
    inChMode = CH_MODE_3_0_2_1;
  }

    /* For the X (> 6) to 6 channel downmix we had no choice.
       To mix from 6 to 2 (or 1) channel(s) we have several possibilities (MPEG
       DSE | MPEG PCE | ITU | ARIB | DLB). Use profile and the metadata
       available flags to determine which equation to use: */

#define DMX_METHOD_MPEG_AMD4 1
#define DMX_METHOD_MPEG_LEGACY 2
#define DMX_METHOD_ARIB_JAPAN 4
#define DMX_METHOD_ITU_RECOM 8
#define DMX_METHOD_CUSTOM 16

  dmxMethod = DMX_METHOD_MPEG_AMD4; /* default */

  if ((pParams->dmxProfile == DMX_PRFL_FORCE_MATRIX_MIX) &&
      (pMetaData->typeFlags & TYPE_PCE_DATA)) {
    dmxMethod = DMX_METHOD_MPEG_LEGACY;
  } else if (!(pMetaData->typeFlags &
               (TYPE_DSE_CLEV_DATA | TYPE_DSE_SLEV_DATA))) {
    switch (pParams->dmxProfile) {
      default:
      case DMX_PRFL_STANDARD:
        /* dmxMethod = DMX_METHOD_MPEG_AMD4; */
        break;
      case DMX_PRFL_MATRIX_MIX:
      case DMX_PRFL_FORCE_MATRIX_MIX:
        if (pMetaData->typeFlags & TYPE_PCE_DATA) {
          dmxMethod = DMX_METHOD_MPEG_LEGACY;
        }
        break;
      case DMX_PRFL_ARIB_JAPAN:
        dmxMethod = DMX_METHOD_ARIB_JAPAN;
        break;
    }
  }

  /* SECOND STAGE: */
  if (numOutChannel <= TWO_CHANNEL) {
    /* Create DMX matrix according to input configuration */
    switch (inChMode) {
      case CH_MODE_2_0_0_0: /* chCfg 2 */
        /* Apply the dual channel mode. */
        switch (pParams->dualChannelMode) {
          case CH1_MODE: /* L' = 0.707 * Ch1;
                            R' = 0.707 * Ch1; */
            dmxSetChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL,
                          LEFT_FRONT_CHANNEL, FL2FXCONST_DMX(0.707f), 0);
            dmxSetChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL,
                          LEFT_FRONT_CHANNEL, FL2FXCONST_DMX(0.707f), 0);
            break;
          case CH2_MODE: /* L' = 0.707 * Ch2;
                            R' = 0.707 * Ch2; */
            dmxSetChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL,
                          RIGHT_FRONT_CHANNEL, FL2FXCONST_DMX(0.707f), 0);
            dmxSetChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL,
                          RIGHT_FRONT_CHANNEL, FL2FXCONST_DMX(0.707f), 0);
            break;
          case MIXED_MODE: /* L' = 0.5*Ch1 + 0.5*Ch2;
                              R' = 0.5*Ch1 + 0.5*Ch2; */
            dmxSetChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL,
                          LEFT_FRONT_CHANNEL, FL2FXCONST_DMX(0.5f), 0);
            dmxAddChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL,
                          RIGHT_FRONT_CHANNEL, FL2FXCONST_DMX(0.5f), 0);
            dmxSetChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL,
                          LEFT_FRONT_CHANNEL, FL2FXCONST_DMX(0.5f), 0);
            dmxAddChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL,
                          RIGHT_FRONT_CHANNEL, FL2FXCONST_DMX(0.5f), 0);
            break;
          default:
          case STEREO_MODE:
            /* Nothing to do */
            break;
        }
        break;
      /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       * - - - - - - - - - - - - - - - - - - - */
      case CH_MODE_2_0_1_0: {
        FIXP_DMX sMixLvl;
        if (dmxMethod == DMX_METHOD_ARIB_JAPAN) {
          /* L' = 0.707*L + 0.5*S;  R' = 0.707*R + 0.5*S; */
          dmxSetChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL,
                        LEFT_FRONT_CHANNEL, FL2FXCONST_DMX(0.707f), 0);
          dmxSetChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL,
                        RIGHT_FRONT_CHANNEL, FL2FXCONST_DMX(0.707f), 0);
          sMixLvl = FL2FXCONST_DMX(0.5f);
        } else { /* L' = L + 0.707*S;  R' = R + 0.707*S; */
          sMixLvl = FL2FXCONST_DMX(0.707f);
        }
        dmxAddChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL,
                      LEFT_REAR_CHANNEL, sMixLvl, 0);
        dmxAddChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL,
                      LEFT_REAR_CHANNEL, sMixLvl, 0);
      } break;
      /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       * - - - - - - - - - - - - - - - - - - - */
      case CH_MODE_3_0_0_0: /* chCfg 3 */
      {
        FIXP_DMX cMixLvl;
        if (dmxMethod == DMX_METHOD_ARIB_JAPAN) {
          /* L' = 0.707*L + 0.5*C;  R' = 0.707*R + 0.5*C; */
          dmxSetChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL,
                        LEFT_FRONT_CHANNEL, FL2FXCONST_DMX(0.707f), 0);
          dmxSetChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL,
                        RIGHT_FRONT_CHANNEL, FL2FXCONST_DMX(0.707f), 0);
          cMixLvl = FL2FXCONST_DMX(0.5f);
        } else { /* L' = L + 0.707*C;  R' = R + 0.707*C; */
          cMixLvl = FL2FXCONST_DMX(0.707f);
        }
        dmxAddChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL,
                      CENTER_FRONT_CHANNEL, cMixLvl, 0);
        dmxAddChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL,
                      CENTER_FRONT_CHANNEL, cMixLvl, 0);
      } break;
      /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       * - - - - - - - - - - - - - - - - - - - */
      case CH_MODE_3_0_1_0: /* chCfg 4 */
      {
        FIXP_DMX csMixLvl;
        if (dmxMethod == DMX_METHOD_ARIB_JAPAN) {
          /* L' = 0.707*L + 0.5*C + 0.5*S;  R' = 0.707*R + 0.5*C + 0.5*S; */
          dmxSetChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL,
                        LEFT_FRONT_CHANNEL, FL2FXCONST_DMX(0.707f), 0);
          dmxSetChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL,
                        RIGHT_FRONT_CHANNEL, FL2FXCONST_DMX(0.707f), 0);
          csMixLvl = FL2FXCONST_DMX(0.5f);
        } else { /* L' = L + 0.707*C + 0.707*S;
                    R' = R + 0.707*C + 0.707*S; */
          csMixLvl = FL2FXCONST_DMX(0.707f);
        }
        dmxAddChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL,
                      CENTER_FRONT_CHANNEL, csMixLvl, 0);
        dmxAddChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL,
                      LEFT_REAR_CHANNEL, csMixLvl, 0);
        dmxAddChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL,
                      CENTER_FRONT_CHANNEL, csMixLvl, 0);
        dmxAddChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL,
                      LEFT_REAR_CHANNEL, csMixLvl, 0);
      } break;
      /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       * - - - - - - - - - - - - - - - - - - - */
      case CH_MODE_3_0_2_0: /* chCfg 5 */
      case CH_MODE_3_0_2_1: /* chCfg 6 */
      {
        switch (dmxMethod) {
          default:
          case DMX_METHOD_MPEG_AMD4: {
            FIXP_DMX cMixLvl, sMixLvl, lMixLvl;
            INT cMixScale, sMixScale, lMixScale;

            /* Get factors from meta data */
            cMixLvl = abMixLvlValueTab[pMetaData->cLevIdx];
            cMixScale = (pMetaData->cLevIdx == 0) ? 1 : 0;
            sMixLvl = abMixLvlValueTab[pMetaData->sLevIdx];
            sMixScale = (pMetaData->sLevIdx == 0) ? 1 : 0;
            lMixLvl = lfeMixLvlValueTab[pMetaData->dmixIdxLfe];
            if (pMetaData->dmixIdxLfe <= 1) {
              lMixScale = 2;
            } else if (pMetaData->dmixIdxLfe <= 5) {
              lMixScale = 1;
            } else {
              lMixScale = 0;
            }
            /* Setup the DMX matrix */
            if ((pParams->pseudoSurrMode == FORCE_PS_DMX) ||
                ((pParams->pseudoSurrMode == AUTO_PS_DMX) &&
                 (pMetaData->pseudoSurround ==
                  1))) { /* L' = L + C*clev - (Ls+Rs)*slev + LFE*lflev;
                            R' = R + C*clev + (Ls+Rs)*slev + LFE*lflev; */
              dmxAddChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL,
                            CENTER_FRONT_CHANNEL, cMixLvl, cMixScale);
              dmxAddChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL,
                            LEFT_REAR_CHANNEL, -sMixLvl, sMixScale);
              dmxAddChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL,
                            RIGHT_REAR_CHANNEL, -sMixLvl, sMixScale);
              dmxAddChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL,
                            LOW_FREQUENCY_CHANNEL, lMixLvl, lMixScale);
              dmxAddChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL,
                            CENTER_FRONT_CHANNEL, cMixLvl, cMixScale);
              dmxAddChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL,
                            LEFT_REAR_CHANNEL, sMixLvl, sMixScale);
              dmxAddChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL,
                            RIGHT_REAR_CHANNEL, sMixLvl, sMixScale);
              dmxAddChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL,
                            LOW_FREQUENCY_CHANNEL, lMixLvl, lMixScale);
            } else { /* L' = L + C*clev + Ls*slev + LFE*llev;
                        R' = R + C*clev + Rs*slev + LFE*llev; */
              dmxAddChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL,
                            CENTER_FRONT_CHANNEL, cMixLvl, cMixScale);
              dmxAddChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL,
                            LEFT_REAR_CHANNEL, sMixLvl, sMixScale);
              dmxAddChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL,
                            LOW_FREQUENCY_CHANNEL, lMixLvl, lMixScale);
              dmxAddChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL,
                            CENTER_FRONT_CHANNEL, cMixLvl, cMixScale);
              dmxAddChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL,
                            RIGHT_REAR_CHANNEL, sMixLvl, sMixScale);
              dmxAddChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL,
                            LOW_FREQUENCY_CHANNEL, lMixLvl, lMixScale);
            }

            /* Add additional DMX gain */
            if (pMetaData->dmxGainIdx2 != 0) { /* Apply DMX gain 2 */
              FIXP_DMX dmxGain;
              INT dmxScale;
              INT sign = (pMetaData->dmxGainIdx2 & 0x40) ? -1 : 1;
              INT val = pMetaData->dmxGainIdx2 & 0x3F;

              /* 10^(dmx_gain_2/80) */
              dmxGain = FX_DBL2FX_DMX(
                  fLdPow(FL2FXCONST_DBL(0.830482023721841f), 2, /* log2(10) */
                         (FIXP_DBL)(sign * val * (LONG)FL2FXCONST_DBL(0.0125f)),
                         0, &dmxScale));
              /* Currently only positive scale factors supported! */
              if (dmxScale < 0) {
                dmxGain >>= -dmxScale;
                dmxScale = 0;
              }

              dmxSetChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL,
                            LEFT_FRONT_CHANNEL, dmxGain, dmxScale);
              dmxSetChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL,
                            RIGHT_FRONT_CHANNEL, dmxGain, dmxScale);
            }
          } break;
          case DMX_METHOD_ARIB_JAPAN:
          case DMX_METHOD_MPEG_LEGACY: {
            FIXP_DMX flev, clev, slevLL, slevLR, slevRL, slevRR;
            FIXP_DMX mtrxMixDwnCoef =
                mpegMixDownIdx2Coef[pMetaData->matrixMixdownIdx];

            if ((pParams->pseudoSurrMode == FORCE_PS_DMX) ||
                ((pParams->pseudoSurrMode == AUTO_PS_DMX) &&
                 (pMetaData->pseudoSurround == 1))) {
              if (dmxMethod == DMX_METHOD_ARIB_JAPAN) {
                /* 3/2 input: L' = 0.707 * [L+0.707*C-k*Ls-k*Rs];
                              R' = 0.707 * [R+0.707*C+k*Ls+k*Rs]; */
                flev = mpegMixDownIdx2Coef[0]; /* a = 0.707 */
              } else { /* 3/2 input: L' = (1.707+2*A)^-1 *
                          [L+0.707*C-A*Ls-A*Rs]; R' = (1.707+2*A)^-1 *
                          [R+0.707*C+A*Ls+A*Rs]; */
                flev = mpegMixDownIdx2PreFact[1][pMetaData->matrixMixdownIdx];
              }
              slevRR = slevRL = FX_DBL2FX_DMX(fMult(flev, mtrxMixDwnCoef));
              slevLL = slevLR = -slevRL;
            } else {
              if (dmxMethod == DMX_METHOD_ARIB_JAPAN) {
                /* 3/2 input: L' = 0.707 * [L+0.707*C+k*Ls];
                              R' = 0.707 * [R+0.707*C+k*Rs]; */
                flev = mpegMixDownIdx2Coef[0]; /* a = 0.707 */
              } else { /* 3/2 input: L' = (1.707+A)^-1 * [L+0.707*C+A*Ls];
                                     R' = (1.707+A)^-1 * [R+0.707*C+A*Rs]; */
                flev = mpegMixDownIdx2PreFact[0][pMetaData->matrixMixdownIdx];
              }
              slevRR = slevLL = FX_DBL2FX_DMX(fMult(flev, mtrxMixDwnCoef));
              slevLR = slevRL = (FIXP_DMX)0;
            }
            /* common factor */
            clev =
                FX_DBL2FX_DMX(fMult(flev, mpegMixDownIdx2Coef[0] /* 0.707 */));

            dmxSetChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL,
                          LEFT_FRONT_CHANNEL, flev, 0);
            dmxAddChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL,
                          CENTER_FRONT_CHANNEL, clev, 0);
            dmxAddChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL,
                          LEFT_REAR_CHANNEL, slevLL, 0);
            dmxAddChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL,
                          RIGHT_REAR_CHANNEL, slevLR, 0);

            dmxSetChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL,
                          RIGHT_FRONT_CHANNEL, flev, 0);
            dmxAddChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL,
                          CENTER_FRONT_CHANNEL, clev, 0);
            dmxAddChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL,
                          LEFT_REAR_CHANNEL, slevRL, 0);
            dmxAddChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL,
                          RIGHT_REAR_CHANNEL, slevRR, 0);
          } break;
        } /* switch (dmxMethod) */
      } break;
      default:
        /* This configuration does not fit to any known downmix equation! */
        err = PCMDMX_INVALID_MODE;
        break;
    } /* switch (inChMode) */

    /* Mark the output channels */
    FDKmemclear(valid, (8) * sizeof(unsigned int));
    valid[LEFT_FRONT_CHANNEL] = 1;
    valid[RIGHT_FRONT_CHANNEL] = 1;
  }

  if (numOutChannel == ONE_CHANNEL) {
    FIXP_DMX monoMixLevel;
    INT monoMixScale = 0;

    dmxClearChannel(mixFactors, mixScales,
                    CENTER_FRONT_CHANNEL); /* C is not in the mix */

    if (dmxMethod ==
        DMX_METHOD_MPEG_LEGACY) { /* C' = (3+2*A)^-1 * [C+L+R+A*Ls+A+Rs]; */
      monoMixLevel = mpegMixDownIdx2PreFact[2][pMetaData->matrixMixdownIdx];

      mixFactors[CENTER_FRONT_CHANNEL][CENTER_FRONT_CHANNEL] = monoMixLevel;
      mixFactors[CENTER_FRONT_CHANNEL][LEFT_FRONT_CHANNEL] = monoMixLevel;
      mixFactors[CENTER_FRONT_CHANNEL][RIGHT_FRONT_CHANNEL] = monoMixLevel;
      monoMixLevel = FX_DBL2FX_DMX(fMult(
          monoMixLevel, mpegMixDownIdx2Coef[pMetaData->matrixMixdownIdx]));
      mixFactors[CENTER_FRONT_CHANNEL][LEFT_REAR_CHANNEL] = monoMixLevel;
      mixFactors[CENTER_FRONT_CHANNEL][RIGHT_REAR_CHANNEL] = monoMixLevel;
    } else {
      switch (dmxMethod) {
        case DMX_METHOD_MPEG_AMD4:
          /* C' = L + R; */
          monoMixLevel = FL2FXCONST_DMX(0.5f);
          monoMixScale = 1;
          break;
        default:
          /* C' = 0.5*L + 0.5*R; */
          monoMixLevel = FL2FXCONST_DMX(0.5f);
          monoMixScale = 0;
          break;
      }
      dmxSetChannel(mixFactors, mixScales, CENTER_FRONT_CHANNEL,
                    LEFT_FRONT_CHANNEL, monoMixLevel, monoMixScale);
      dmxAddChannel(mixFactors, mixScales, CENTER_FRONT_CHANNEL,
                    RIGHT_FRONT_CHANNEL, monoMixLevel, monoMixScale);
    }

    /* Mark the output channel */
    FDKmemclear(valid, (8) * sizeof(unsigned int));
    valid[CENTER_FRONT_CHANNEL] = 1;
  }

#define MAX_SEARCH_START_VAL (-7)

  {
    LONG chSum[(8)];
    INT chSumMax = MAX_SEARCH_START_VAL;

    /* Determine the current maximum scale factor */
    for (outCh = 0; outCh < (8); outCh += 1) {
      if (valid[outCh] != 0) {
        unsigned int inCh;
        for (inCh = 0; inCh < (8); inCh += 1) {
          if (mixScales[outCh][inCh] > maxScale) { /* Store the new maximum */
            maxScale = mixScales[outCh][inCh];
          }
        }
      }
    }

    /* Individualy analyse output chanal levels */
    for (outCh = 0; outCh < (8); outCh += 1) {
      chSum[outCh] = MAX_SEARCH_START_VAL;
      if (valid[outCh] != 0) {
        int ovrflwProtScale = 0;
        unsigned int inCh;

        /* Accumulate all factors for each output channel */
        chSum[outCh] = 0;
        for (inCh = 0; inCh < (8); inCh += 1) {
          SHORT addFact = FX_DMX2SHRT(mixFactors[outCh][inCh]);
          if (mixScales[outCh][inCh] <= maxScale) {
            addFact >>= maxScale - mixScales[outCh][inCh];
          } else {
            addFact <<= mixScales[outCh][inCh] - maxScale;
          }
          chSum[outCh] += addFact;
        }
        if (chSum[outCh] > (LONG)MAXVAL_SGL) {
          while (chSum[outCh] > (LONG)MAXVAL_SGL) {
            ovrflwProtScale += 1;
            chSum[outCh] >>= 1;
          }
        } else if (chSum[outCh] > 0) {
          while ((chSum[outCh] << 1) <= (LONG)MAXVAL_SGL) {
            ovrflwProtScale -= 1;
            chSum[outCh] <<= 1;
          }
        }
        /* Store the differential scaling in the same array */
        chSum[outCh] = ovrflwProtScale;
      }
    }

    for (outCh = 0; outCh < (8); outCh += 1) {
      if ((valid[outCh] != 0) &&
          (chSum[outCh] > chSumMax)) { /* Store the new maximum */
        chSumMax = chSum[outCh];
      }
    }
    maxScale = fMax(maxScale + chSumMax, 0);

    /* Normalize all factors */
    for (outCh = 0; outCh < (8); outCh += 1) {
      if (valid[outCh] != 0) {
        unsigned int inCh;
        for (inCh = 0; inCh < (8); inCh += 1) {
          if (mixFactors[outCh][inCh] != (FIXP_DMX)0) {
            if (mixScales[outCh][inCh] <= maxScale) {
              mixFactors[outCh][inCh] >>= maxScale - mixScales[outCh][inCh];
            } else {
              mixFactors[outCh][inCh] <<= mixScales[outCh][inCh] - maxScale;
            }
            mixScales[outCh][inCh] = maxScale;
          }
        }
      }
    }
  }

  /* return the scale factor */
  *pOutScale = maxScale;

  return (err);
}

/** Open and initialize an instance of the PCM downmix module
 * @param [out] Pointer to a buffer receiving the handle of the new instance.
 * @returns Returns an error code.
 **/
PCMDMX_ERROR pcmDmx_Open(HANDLE_PCM_DOWNMIX *pSelf) {
  HANDLE_PCM_DOWNMIX self;

  if (pSelf == NULL) {
    return (PCMDMX_INVALID_HANDLE);
  }

  *pSelf = NULL;

  self = (HANDLE_PCM_DOWNMIX)GetPcmDmxInstance(0);
  if (self == NULL) {
    return (PCMDMX_OUT_OF_MEMORY);
  }

  /* Reset the full instance */
  pcmDmx_Reset(self, PCMDMX_RESET_FULL);

  *pSelf = self;

  return (PCMDMX_OK);
}

/** Reset all static values like e.g. mixdown coefficients.
 * @param [in] Handle of PCM downmix module instance.
 * @param [in] Flags telling which parts of the module shall be reset.
 * @returns Returns an error code.
 **/
PCMDMX_ERROR pcmDmx_Reset(HANDLE_PCM_DOWNMIX self, UINT flags) {
  if (self == NULL) {
    return (PCMDMX_INVALID_HANDLE);
  }

  if (flags & PCMDMX_RESET_PARAMS) {
    PCM_DMX_USER_PARAMS *pParams = &self->userParams;

    pParams->dualChannelMode = STEREO_MODE;
    pParams->pseudoSurrMode = NEVER_DO_PS_DMX;
    pParams->numOutChannelsMax = (6);
    pParams->numOutChannelsMin = (0);
    pParams->frameDelay = 0;
    pParams->expiryFrame = (0);

    self->applyProcessing = 0;
  }

  if (flags & PCMDMX_RESET_BS_DATA) {
    int slot;
    /* Init all slots with a default set */
    for (slot = 0; slot <= (1); slot += 1) {
      FDKmemcpy(&self->bsMetaData[slot], &dfltMetaData,
                sizeof(DMX_BS_META_DATA));
    }
  }

  return (PCMDMX_OK);
}

/** Set one parameter for one instance of the PCM downmix module.
 * @param [in] Handle of PCM downmix module instance.
 * @param [in] Parameter to be set.
 * @param [in] Parameter value.
 * @returns Returns an error code.
 **/
PCMDMX_ERROR pcmDmx_SetParam(HANDLE_PCM_DOWNMIX self, const PCMDMX_PARAM param,
                             const INT value) {
  switch (param) {
    case DMX_PROFILE_SETTING:
      switch ((DMX_PROFILE_TYPE)value) {
        case DMX_PRFL_STANDARD:
        case DMX_PRFL_MATRIX_MIX:
        case DMX_PRFL_FORCE_MATRIX_MIX:
        case DMX_PRFL_ARIB_JAPAN:
          break;
        default:
          return (PCMDMX_UNABLE_TO_SET_PARAM);
      }
      if (self == NULL) return (PCMDMX_INVALID_HANDLE);
      self->userParams.dmxProfile = (DMX_PROFILE_TYPE)value;
      break;

    case DMX_BS_DATA_EXPIRY_FRAME:
      if (self == NULL) return (PCMDMX_INVALID_HANDLE);
      self->userParams.expiryFrame = (value > 0) ? (UINT)value : 0;
      break;

    case DMX_BS_DATA_DELAY:
      if ((value > (1)) || (value < 0)) {
        return (PCMDMX_UNABLE_TO_SET_PARAM);
      }
      if (self == NULL) {
        return (PCMDMX_INVALID_HANDLE);
      }
      self->userParams.frameDelay = (UCHAR)value;
      break;

    case MIN_NUMBER_OF_OUTPUT_CHANNELS:
      switch (value) { /* supported output channels */
        case -1:
        case 0:
        case ONE_CHANNEL:
        case TWO_CHANNEL:
        case SIX_CHANNEL:
        case EIGHT_CHANNEL:
          break;
        default:
          return (PCMDMX_UNABLE_TO_SET_PARAM);
      }
      if (self == NULL) return (PCMDMX_INVALID_HANDLE);
      /* Store the new value */
      self->userParams.numOutChannelsMin = (value > 0) ? (SHORT)value : -1;
      if ((value > 0) && (self->userParams.numOutChannelsMax > 0) &&
          (value > self->userParams
                       .numOutChannelsMax)) { /* MIN > MAX would be an invalid
                                                 state. Thus set MAX = MIN in
                                                 this case. */
        self->userParams.numOutChannelsMax = self->userParams.numOutChannelsMin;
      }
      break;

    case MAX_NUMBER_OF_OUTPUT_CHANNELS:
      switch (value) { /* supported output channels */
        case -1:
        case 0:
        case ONE_CHANNEL:
        case TWO_CHANNEL:
        case SIX_CHANNEL:
        case EIGHT_CHANNEL:
          break;
        default:
          return (PCMDMX_UNABLE_TO_SET_PARAM);
      }
      if (self == NULL) return (PCMDMX_INVALID_HANDLE);
      /* Store the new value */
      self->userParams.numOutChannelsMax = (value > 0) ? (SHORT)value : -1;
      if ((value > 0) &&
          (value < self->userParams
                       .numOutChannelsMin)) { /* MAX < MIN would be an invalid
                                                 state. Thus set MIN = MAX in
                                                 this case. */
        self->userParams.numOutChannelsMin = self->userParams.numOutChannelsMax;
      }
      break;

    case DMX_DUAL_CHANNEL_MODE:
      switch ((DUAL_CHANNEL_MODE)value) {
        case STEREO_MODE:
        case CH1_MODE:
        case CH2_MODE:
        case MIXED_MODE:
          break;
        default:
          return (PCMDMX_UNABLE_TO_SET_PARAM);
      }
      if (self == NULL) return (PCMDMX_INVALID_HANDLE);
      self->userParams.dualChannelMode = (DUAL_CHANNEL_MODE)value;
      self->applyProcessing = ((DUAL_CHANNEL_MODE)value != STEREO_MODE)
                                  ? 1
                                  : 0; /* Force processing if necessary. */
      break;

    case DMX_PSEUDO_SURROUND_MODE:
      switch ((PSEUDO_SURROUND_MODE)value) {
        case NEVER_DO_PS_DMX:
        case AUTO_PS_DMX:
        case FORCE_PS_DMX:
          break;
        default:
          return (PCMDMX_UNABLE_TO_SET_PARAM);
      }
      if (self == NULL) return (PCMDMX_INVALID_HANDLE);
      self->userParams.pseudoSurrMode = (PSEUDO_SURROUND_MODE)value;
      break;

    default:
      return (PCMDMX_UNKNOWN_PARAM);
  }

  return (PCMDMX_OK);
}

/** Get one parameter value of one PCM downmix module instance.
 * @param [in] Handle of PCM downmix module instance.
 * @param [in] Parameter to be set.
 * @param [out] Pointer to buffer receiving the parameter value.
 * @returns Returns an error code.
 **/
PCMDMX_ERROR pcmDmx_GetParam(HANDLE_PCM_DOWNMIX self, const PCMDMX_PARAM param,
                             INT *const pValue) {
  PCM_DMX_USER_PARAMS *pUsrParams;

  if ((self == NULL) || (pValue == NULL)) {
    return (PCMDMX_INVALID_HANDLE);
  }
  pUsrParams = &self->userParams;

  switch (param) {
    case DMX_PROFILE_SETTING:
      *pValue = (INT)pUsrParams->dmxProfile;
      break;
    case DMX_BS_DATA_EXPIRY_FRAME:
      *pValue = (INT)pUsrParams->expiryFrame;
      break;
    case DMX_BS_DATA_DELAY:
      *pValue = (INT)pUsrParams->frameDelay;
      break;
    case MIN_NUMBER_OF_OUTPUT_CHANNELS:
      *pValue = (INT)pUsrParams->numOutChannelsMin;
      break;
    case MAX_NUMBER_OF_OUTPUT_CHANNELS:
      *pValue = (INT)pUsrParams->numOutChannelsMax;
      break;
    case DMX_DUAL_CHANNEL_MODE:
      *pValue = (INT)pUsrParams->dualChannelMode;
      break;
    case DMX_PSEUDO_SURROUND_MODE:
      *pValue = (INT)pUsrParams->pseudoSurrMode;
      break;
    default:
      return (PCMDMX_UNKNOWN_PARAM);
  }

  return (PCMDMX_OK);
}

/*
 * Read DMX meta-data from a data stream element.
 */
PCMDMX_ERROR pcmDmx_Parse(HANDLE_PCM_DOWNMIX self, HANDLE_FDK_BITSTREAM hBs,
                          UINT ancDataBits, int isMpeg2) {
  PCMDMX_ERROR errorStatus = PCMDMX_OK;

#define MAX_DSE_ANC_BYTES (16)    /* 15 bytes */
#define ANC_DATA_SYNC_BYTE (0xBC) /* ancillary data sync byte. */

  DMX_BS_META_DATA *pBsMetaData;

  int skip4Dmx = 0, skip4Ext = 0;
  int dmxLvlAvail = 0, extDataAvail = 0;
  UINT foundNewData = 0;
  UINT minAncBits = ((isMpeg2) ? 5 : 3) * 8;

  if ((self == NULL) || (hBs == NULL)) {
    return (PCMDMX_INVALID_HANDLE);
  }

  /* sanity checks */
  if ((ancDataBits < minAncBits) || (ancDataBits > FDKgetValidBits(hBs))) {
    return (PCMDMX_CORRUPT_ANC_DATA);
  }

  pBsMetaData = &self->bsMetaData[0];

  if (isMpeg2) {
    /* skip DVD ancillary data */
    FDKpushFor(hBs, 16);
  }

  /* check sync word */
  if (FDKreadBits(hBs, 8) != ANC_DATA_SYNC_BYTE) {
    return (PCMDMX_CORRUPT_ANC_DATA);
  }

  /* skip MPEG audio type and Dolby surround mode */
  FDKpushFor(hBs, 4);

  if (isMpeg2) {
    /* int numAncBytes = */ FDKreadBits(hBs, 4);
    /* advanced dynamic range control */
    if (FDKreadBit(hBs)) skip4Dmx += 24;
    /* dialog normalization */
    if (FDKreadBit(hBs)) skip4Dmx += 8;
    /* reproduction_level */
    if (FDKreadBit(hBs)) skip4Dmx += 8;
  } else {
    FDKpushFor(hBs, 2); /* drc presentation mode */
    pBsMetaData->pseudoSurround = (SCHAR)FDKreadBit(hBs);
    FDKpushFor(hBs, 4); /* reserved bits */
  }

  /* downmixing levels MPEGx status */
  dmxLvlAvail = FDKreadBit(hBs);

  if (isMpeg2) {
    /* scale factor CRC status */
    if (FDKreadBit(hBs)) skip4Ext += 16;
  } else {
    /* ancillary data extension status */
    extDataAvail = FDKreadBit(hBs);
  }

  /* audio coding and compression status */
  if (FDKreadBit(hBs)) skip4Ext += 16;
  /* coarse grain timecode status */
  if (FDKreadBit(hBs)) skip4Ext += 16;
  /* fine grain timecode status */
  if (FDKreadBit(hBs)) skip4Ext += 16;

  /* skip the useless data to get to the DMX levels */
  FDKpushFor(hBs, skip4Dmx);

  /* downmix_levels_MPEGX */
  if (dmxLvlAvail) {
    if (FDKreadBit(hBs)) { /* center_mix_level_on */
      pBsMetaData->cLevIdx = (UCHAR)FDKreadBits(hBs, 3);
      foundNewData |= TYPE_DSE_CLEV_DATA;
    } else {
      FDKreadBits(hBs, 3);
    }
    if (FDKreadBit(hBs)) { /* surround_mix_level_on */
      pBsMetaData->sLevIdx = (UCHAR)FDKreadBits(hBs, 3);
      foundNewData |= TYPE_DSE_SLEV_DATA;
    } else {
      FDKreadBits(hBs, 3);
    }
  }

  /* skip the useless data to get to the ancillary data extension */
  FDKpushFor(hBs, skip4Ext);

  /* anc data extension (MPEG-4 only) */
  if (extDataAvail) {
    int extDmxLvlSt, extDmxGainSt, extDmxLfeSt;

    FDKreadBit(hBs); /* reserved bit */
    extDmxLvlSt = FDKreadBit(hBs);
    extDmxGainSt = FDKreadBit(hBs);
    extDmxLfeSt = FDKreadBit(hBs);
    FDKreadBits(hBs, 4); /* reserved bits */

    if (extDmxLvlSt) {
      pBsMetaData->dmixIdxA = (UCHAR)FDKreadBits(hBs, 3);
      pBsMetaData->dmixIdxB = (UCHAR)FDKreadBits(hBs, 3);
      FDKreadBits(hBs, 2); /* reserved bits */
      foundNewData |= TYPE_DSE_DMIX_AB_DATA;
    }
    if (extDmxGainSt) {
      pBsMetaData->dmxGainIdx5 = (UCHAR)FDKreadBits(hBs, 7);
      FDKreadBit(hBs); /* reserved bit */
      pBsMetaData->dmxGainIdx2 = (UCHAR)FDKreadBits(hBs, 7);
      FDKreadBit(hBs); /* reserved bit */
      foundNewData |= TYPE_DSE_DMX_GAIN_DATA;
    }
    if (extDmxLfeSt) {
      pBsMetaData->dmixIdxLfe = (UCHAR)FDKreadBits(hBs, 4);
      FDKreadBits(hBs, 4); /* reserved bits */
      foundNewData |= TYPE_DSE_DMIX_LFE_DATA;
    }
  }

  /* final sanity check on the amount of read data */
  if ((INT)FDKgetValidBits(hBs) < 0) {
    errorStatus = PCMDMX_CORRUPT_ANC_DATA;
  }

  if ((errorStatus == PCMDMX_OK) && (foundNewData != 0)) {
    /* announce new data */
    pBsMetaData->typeFlags |= foundNewData;
    /* reset expiry counter */
    pBsMetaData->expiryCount = 0;
  }

  return (errorStatus);
}

/*
 * Read DMX meta-data from a data stream element.
 */
PCMDMX_ERROR pcmDmx_ReadDvbAncData(HANDLE_PCM_DOWNMIX self, UCHAR *pAncDataBuf,
                                   UINT ancDataBytes, int isMpeg2) {
  PCMDMX_ERROR errorStatus = PCMDMX_OK;
  FDK_BITSTREAM bs;
  HANDLE_FDK_BITSTREAM hBs = &bs;

  if (self == NULL) {
    return (PCMDMX_INVALID_HANDLE);
  }

  /* sanity checks */
  if ((pAncDataBuf == NULL) || (ancDataBytes == 0)) {
    return (PCMDMX_CORRUPT_ANC_DATA);
  }

  FDKinitBitStream(hBs, pAncDataBuf, MAX_DSE_ANC_BYTES, ancDataBytes * 8,
                   BS_READER);

  errorStatus = pcmDmx_Parse(self, hBs, ancDataBytes * 8, isMpeg2);

  return (errorStatus);
}

/** Set the matrix mixdown information extracted from the PCE of an AAC
 *bitstream. Note: Call only if matrix_mixdown_idx_present is true.
 * @param [in] Handle of PCM downmix module instance.
 * @param [in] The 2 bit matrix mixdown index extracted from PCE.
 * @param [in] The pseudo surround enable flag extracted from PCE.
 * @returns Returns an error code.
 **/
PCMDMX_ERROR pcmDmx_SetMatrixMixdownFromPce(HANDLE_PCM_DOWNMIX self,
                                            int matrixMixdownPresent,
                                            int matrixMixdownIdx,
                                            int pseudoSurroundEnable) {
  if (self == NULL) {
    return (PCMDMX_INVALID_HANDLE);
  }

  {
    DMX_BS_META_DATA *pBsMetaData = &self->bsMetaData[0];

    if (matrixMixdownPresent) {
      pBsMetaData->pseudoSurround = (pseudoSurroundEnable) ? 1 : 0;
      pBsMetaData->matrixMixdownIdx = matrixMixdownIdx & 0x03;
      pBsMetaData->typeFlags |= TYPE_PCE_DATA;
      /* Reset expiry counter */
      pBsMetaData->expiryCount = 0;
    }
  }

  return (PCMDMX_OK);
}

/** Apply down or up mixing.
 * @param [in]    Handle of PCM downmix module instance.
 * @param [inout] Pointer to buffer that hold the time domain signal.
 * @param [in]    Pointer where the amount of output samples is returned into.
 * @param [in]    Size of pPcmBuf.
 * @param [inout] Pointer where the amount of output channels is returned into.
 * @param [in]    Input and output samples are processed interleaved.
 * @param [inout] Array where the corresponding channel type for each output
 *audio channel is stored into.
 * @param [inout] Array where the corresponding channel type index for each
 *output audio channel is stored into.
 * @param [in]    Array containing the out channel mapping to be used (From MPEG
 *PCE ordering to whatever is required).
 * @param [out]   Pointer on a field receiving the scale factor that has to be
 *applied on all samples afterwards. If the handed pointer is NULL scaling is
 *done internally.
 * @returns Returns an error code.
 **/
PCMDMX_ERROR pcmDmx_ApplyFrame(HANDLE_PCM_DOWNMIX self, DMX_PCM *pPcmBuf,
                               const int pcmBufSize, UINT frameSize,
                               INT *nChannels, INT fInterleaved,
                               AUDIO_CHANNEL_TYPE channelType[],
                               UCHAR channelIndices[],
                               const FDK_channelMapDescr *const mapDescr,
                               INT *pDmxOutScale) {
  PCM_DMX_USER_PARAMS *pParam = NULL;
  PCMDMX_ERROR errorStatus = PCMDMX_OK;
  DUAL_CHANNEL_MODE dualChannelMode;
  PCM_DMX_CHANNEL_MODE inChMode;
  PCM_DMX_CHANNEL_MODE outChMode;
  INT devNull; /* Just a dummy to avoid a lot of branches in the code */
  int numOutChannels, numInChannels;
  int inStride, outStride, offset;
  int dmxMaxScale, dmxScale;
  int slot;
  UCHAR inOffsetTable[(8)];

  DMX_BS_META_DATA bsMetaData;

  if ((self == NULL) || (nChannels == NULL) || (channelType == NULL) ||
      (channelIndices == NULL) || (!FDK_chMapDescr_isValid(mapDescr))) {
    return (PCMDMX_INVALID_HANDLE);
  }

  /* Init the output scaling */
  dmxScale = 0;
  if (pDmxOutScale != NULL) {
    /* Avoid final scaling internally and hand it to the outside world. */
    *pDmxOutScale = 0;
    dmxMaxScale = (3);
  } else {
    /* Apply the scaling internally. */
    pDmxOutScale = &devNull; /* redirect to temporal stack memory */
    dmxMaxScale = 0;
  }

  pParam = &self->userParams;
  numInChannels = *nChannels;

  /* Perform some input sanity checks */
  if (pPcmBuf == NULL) {
    return (PCMDMX_INVALID_ARGUMENT);
  }
  if (frameSize == 0) {
    return (PCMDMX_INVALID_ARGUMENT);
  }
  if (numInChannels == 0) {
    return (PCMDMX_INVALID_ARGUMENT);
  }
  if (numInChannels > (8)) {
    return (PCMDMX_INVALID_CH_CONFIG);
  }

  /* Check on misconfiguration */
  FDK_ASSERT((pParam->numOutChannelsMax <= 0) ||
             (pParam->numOutChannelsMax >= pParam->numOutChannelsMin));

  /* Determine if the module has to do processing */
  if ((self->applyProcessing == 0) &&
      ((pParam->numOutChannelsMax <= 0) ||
       (pParam->numOutChannelsMax >= numInChannels)) &&
      (pParam->numOutChannelsMin <= numInChannels)) {
    /* Nothing to do */
    return (errorStatus);
  }

  /* Determine the number of output channels */
  if ((pParam->numOutChannelsMax > 0) &&
      (numInChannels > pParam->numOutChannelsMax)) {
    numOutChannels = pParam->numOutChannelsMax;
  } else if (numInChannels < pParam->numOutChannelsMin) {
    numOutChannels = pParam->numOutChannelsMin;
  } else {
    numOutChannels = numInChannels;
  }

  /* Check I/O buffer size */
  if ((UINT)pcmBufSize < (UINT)numOutChannels * frameSize) {
    return (PCMDMX_OUTPUT_BUFFER_TOO_SMALL);
  }

  dualChannelMode = pParam->dualChannelMode;

  /* Analyse input channel configuration and get channel offset
   * table that can be accessed with the fixed channel labels. */
  errorStatus = getChannelMode(numInChannels, channelType, channelIndices,
                               inOffsetTable, &inChMode);
  if (PCMDMX_IS_FATAL_ERROR(errorStatus) || (inChMode == CH_MODE_UNDEFINED)) {
    /* We don't need to restore because the channel
       configuration has not been changed. Just exit. */
    return (PCMDMX_INVALID_CH_CONFIG);
  }

  /* Set input stride and offset */
  if (fInterleaved) {
    inStride = numInChannels;
    offset = 1; /* Channel specific offset factor */
  } else {
    inStride = 1;
    offset = frameSize; /* Channel specific offset factor */
  }

  /* Reset downmix meta data if necessary */
  if ((pParam->expiryFrame > 0) &&
      (++self->bsMetaData[0].expiryCount >
       pParam
           ->expiryFrame)) { /* The metadata read from bitstream is too old. */
#ifdef FDK_ASSERT_ENABLE
    PCMDMX_ERROR err = pcmDmx_Reset(self, PCMDMX_RESET_BS_DATA);
    FDK_ASSERT(err == PCMDMX_OK);
#else
    pcmDmx_Reset(self, PCMDMX_RESET_BS_DATA);
#endif
  }
  FDKmemcpy(&bsMetaData, &self->bsMetaData[pParam->frameDelay],
            sizeof(DMX_BS_META_DATA));
  /* Maintain delay line */
  for (slot = pParam->frameDelay; slot > 0; slot -= 1) {
    FDKmemcpy(&self->bsMetaData[slot], &self->bsMetaData[slot - 1],
              sizeof(DMX_BS_META_DATA));
  }

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
   * - - - - - - - - - - - - - - - - - - */
  if (numInChannels > numOutChannels) { /* Apply downmix */
    DMX_PCM *pInPcm[(8)] = {NULL};
    DMX_PCM *pOutPcm[(8)] = {NULL};
    FIXP_DMX mixFactors[(8)][(8)];
    UCHAR outOffsetTable[(8)];
    UINT sample;
    int chCfg = 0;
    int bypScale = 0;

    if (numInChannels > SIX_CHANNEL) {
      AUDIO_CHANNEL_TYPE multiPurposeChType[2];

      /* Get the type of the multipurpose channels */
      multiPurposeChType[0] =
          channelType[inOffsetTable[LEFT_MULTIPRPS_CHANNEL]];
      multiPurposeChType[1] =
          channelType[inOffsetTable[RIGHT_MULTIPRPS_CHANNEL]];

      /* Check if the input configuration is one defined in the standard. */
      switch (inChMode) {
        case CH_MODE_5_0_2_1: /* chCfg 7 || 14 */
          /* Further analyse the input config to distinguish the two
           * CH_MODE_5_0_2_1 configs. */
          if ((multiPurposeChType[0] == ACT_FRONT_TOP) &&
              (multiPurposeChType[1] == ACT_FRONT_TOP)) {
            chCfg = 14;
          } else {
            chCfg = 7;
          }
          break;
        case CH_MODE_3_0_3_1: /* chCfg 11 */
          chCfg = 11;
          break;
        case CH_MODE_3_0_4_1: /* chCfg 12 */
          chCfg = 12;
          break;
        default:
          chCfg = 0; /* Not a known config */
          break;
      }
    }

    /* Set this stages output stride and channel mode: */
    outStride = (fInterleaved) ? numOutChannels : 1;
    outChMode = outChModeTable[numOutChannels];
    FDK_ASSERT(outChMode != CH_MODE_UNDEFINED);

    /* Get channel description and channel mapping for the desired output
     * configuration. */
    getChannelDescription(outChMode, mapDescr, channelType, channelIndices,
                          outOffsetTable);
    /* Now there is no way back because we modified the channel configuration!
     */

    /* Create the DMX matrix */
    errorStatus =
        getMixFactors((chCfg > 0) ? 1 : 0,
                      (chCfg > 0) ? (PCM_DMX_CHANNEL_MODE)chCfg : inChMode,
                      outChMode, pParam, &bsMetaData, mixFactors, &dmxScale);
    /* No fatal errors can occur here. The function is designed to always return
       a valid matrix. The error code is used to signal configurations and
       matrices that are not conform to any standard. */

    /* Determine the final scaling */
    bypScale = fMin(dmxMaxScale, dmxScale);
    *pDmxOutScale += bypScale;
    dmxScale -= bypScale;

    { /* Set channel pointer for input. Remove empty cols. */
      int inCh, outCh, map[(8)];
      int ch = 0;
      for (inCh = 0; inCh < (8); inCh += 1) {
        if (inOffsetTable[inCh] < (UCHAR)numInChannels) {
          pInPcm[ch] = &pPcmBuf[inOffsetTable[inCh] * offset];
          map[ch++] = inCh;
        }
      }
      for (; ch < (8); ch += 1) {
        map[ch] = ch;
      }

      /* Remove unused cols from factor matrix */
      for (inCh = 0; inCh < numInChannels; inCh += 1) {
        if (inCh != map[inCh]) {
          for (outCh = 0; outCh < (8); outCh += 1) {
            mixFactors[outCh][inCh] = mixFactors[outCh][map[inCh]];
          }
        }
      }

      /* Set channel pointer for output. Remove empty cols. */
      ch = 0;
      for (outCh = 0; outCh < (8); outCh += 1) {
        if (outOffsetTable[outCh] < (UCHAR)numOutChannels) {
          pOutPcm[ch] = &pPcmBuf[outOffsetTable[outCh] * offset];
          map[ch++] = outCh;
        }
      }
      for (; ch < (8); ch += 1) {
        map[ch] = ch;
      }

      /* Remove unused rows from factor matrix */
      for (outCh = 0; outCh < numOutChannels; outCh += 1) {
        if (outCh != map[outCh]) {
          FDKmemcpy(&mixFactors[outCh], &mixFactors[map[outCh]],
                    (8) * sizeof(FIXP_DMX));
        }
      }
    }

    /* Sample processing loop */
    for (sample = 0; sample < frameSize; sample++) {
      DMX_PCM tIn[(8)] = {0};
      FIXP_DBL tOut[(8)] = {(FIXP_DBL)0};
      int inCh, outCh;

      /* Preload all input samples */
      for (inCh = 0; inCh < numInChannels; inCh += 1) {
        if (pInPcm[inCh] != NULL) {
          tIn[inCh] = *pInPcm[inCh];
          pInPcm[inCh] += inStride;
        } else {
          tIn[inCh] = (DMX_PCM)0;
        }
      }
      /* Apply downmix coefficients to input samples and accumulate for output
       */
      for (outCh = 0; outCh < numOutChannels; outCh += 1) {
        for (inCh = 0; inCh < numInChannels; inCh += 1) {
          tOut[outCh] += fMult((DMX_PCMF)tIn[inCh], mixFactors[outCh][inCh]);
        }
        FDK_ASSERT(pOutPcm[outCh] >= pPcmBuf);
        FDK_ASSERT(pOutPcm[outCh] < &pPcmBuf[pcmBufSize]);
        /* Write sample */
        *pOutPcm[outCh] = (DMX_PCM)SATURATE_SHIFT(
            tOut[outCh], DFRACT_BITS - DMX_PCM_BITS - dmxScale, DMX_PCM_BITS);
        pOutPcm[outCh] += outStride;
      }
    }

    /* Update the number of output channels */
    *nChannels = numOutChannels;

  } /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       - - - - - - - - - - - - - - - - - - */
  else if (numInChannels < numOutChannels) { /* Apply rudimentary upmix */
    /* Set up channel pointer */
    UCHAR outOffsetTable[(8)];

    /* FIRST STAGE
         Create a stereo/dual channel signal */
    if (numInChannels == ONE_CHANNEL) {
      DMX_PCM *pInPcm[(8)];
      DMX_PCM *pOutLF, *pOutRF;
      UINT sample;

      /* Set this stages output stride and channel mode: */
      outStride = (fInterleaved) ? TWO_CHANNEL : 1;
      outChMode = outChModeTable[TWO_CHANNEL];

      /* Get channel description and channel mapping for this
       * stages number of output channels (always STEREO). */
      getChannelDescription(outChMode, mapDescr, channelType, channelIndices,
                            outOffsetTable);
      /* Now there is no way back because we modified the channel configuration!
       */

      /* Set input channel pointer. The first channel is always at index 0. */
      pInPcm[CENTER_FRONT_CHANNEL] =
          &pPcmBuf[(frameSize - 1) *
                   inStride]; /* Considering input mapping could lead to a
                                 invalid pointer here if the channel is not
                                 declared to be a front channel. */

      /* Set output channel pointer (for this stage). */
      pOutLF = &pPcmBuf[outOffsetTable[LEFT_FRONT_CHANNEL] * offset +
                        (frameSize - 1) * outStride];
      pOutRF = &pPcmBuf[outOffsetTable[RIGHT_FRONT_CHANNEL] * offset +
                        (frameSize - 1) * outStride];

      /* 1/0 input: */
      for (sample = 0; sample < frameSize; sample++) {
        /* L' = C;  R' = C; */
        *pOutLF = *pOutRF = *pInPcm[CENTER_FRONT_CHANNEL];

        pInPcm[CENTER_FRONT_CHANNEL] -= inStride;
        pOutLF -= outStride;
        pOutRF -= outStride;
      }

      /* Prepare for next stage: */
      inStride = outStride;
      inChMode = outChMode;
      FDKmemcpy(inOffsetTable, outOffsetTable, (8) * sizeof(UCHAR));
    }

    /* SECOND STAGE
         Extend with zero channels to achieved the desired number of output
       channels. */
    if (numOutChannels > TWO_CHANNEL) {
      DMX_PCM *pIn[(8)] = {NULL};
      DMX_PCM *pOut[(8)] = {NULL};
      UINT sample;
      AUDIO_CHANNEL_TYPE inChTypes[(8)];
      UCHAR inChIndices[(8)];
      UCHAR numChPerGrp[2][(4)];
      int nContentCh = 0; /* Number of channels with content */
      int nEmptyCh = 0;   /* Number of channels with content */
      int ch, chGrp, isCompatible = 1;

      /* Do not change the signalling which is the channel types and indices.
         Just reorder and add channels. So first save the input signalling. */
      FDKmemcpy(inChTypes, channelType,
                numInChannels * sizeof(AUDIO_CHANNEL_TYPE));
      FDKmemclear(inChTypes + numInChannels,
                  ((8) - numInChannels) * sizeof(AUDIO_CHANNEL_TYPE));
      FDKmemcpy(inChIndices, channelIndices, numInChannels * sizeof(UCHAR));
      FDKmemclear(inChIndices + numInChannels,
                  ((8) - numInChannels) * sizeof(UCHAR));

      /* Set this stages output stride and channel mode: */
      outStride = (fInterleaved) ? numOutChannels : 1;
      outChMode = outChModeTable[numOutChannels];
      FDK_ASSERT(outChMode != CH_MODE_UNDEFINED);

      /* Check if input channel config can be easily mapped to the desired
       * output config. */
      for (chGrp = 0; chGrp < (4); chGrp += 1) {
        numChPerGrp[IN][chGrp] = (inChMode >> (chGrp * 4)) & 0xF;
        numChPerGrp[OUT][chGrp] = (outChMode >> (chGrp * 4)) & 0xF;

        if (numChPerGrp[IN][chGrp] > numChPerGrp[OUT][chGrp]) {
          isCompatible = 0;
          break;
        }
      }

      if (isCompatible) {
        /* Get new channel description and channel
         * mapping for the desired output channel mode. */
        getChannelDescription(outChMode, mapDescr, channelType, channelIndices,
                              outOffsetTable);
        /* If the input config has a back center channel but the output
           config has not, copy it to left and right (if available). */
        if ((numChPerGrp[IN][CH_GROUP_REAR] % 2) &&
            !(numChPerGrp[OUT][CH_GROUP_REAR] % 2)) {
          if (numChPerGrp[IN][CH_GROUP_REAR] == 1) {
            inOffsetTable[RIGHT_REAR_CHANNEL] =
                inOffsetTable[LEFT_REAR_CHANNEL];
          } else if (numChPerGrp[IN][CH_GROUP_REAR] == 3) {
            inOffsetTable[RIGHT_MULTIPRPS_CHANNEL] =
                inOffsetTable[LEFT_MULTIPRPS_CHANNEL];
          }
        }
      } else {
        /* Just copy and extend the original config */
        FDKmemcpy(outOffsetTable, inOffsetTable, (8) * sizeof(UCHAR));
      }

      /* Set I/O channel pointer.
         Note: The following assignment algorithm clears the channel offset
         tables. Thus they can not be used afterwards. */
      for (ch = 0; ch < (8); ch += 1) {
        if ((outOffsetTable[ch] < 255) &&
            (inOffsetTable[ch] < 255)) { /* Set I/O pointer: */
          pIn[nContentCh] =
              &pPcmBuf[inOffsetTable[ch] * offset + (frameSize - 1) * inStride];
          pOut[nContentCh] = &pPcmBuf[outOffsetTable[ch] * offset +
                                      (frameSize - 1) * outStride];
          /* Update signalling */
          channelType[outOffsetTable[ch]] = inChTypes[inOffsetTable[ch]];
          channelIndices[outOffsetTable[ch]] = inChIndices[inOffsetTable[ch]];
          inOffsetTable[ch] = 255;
          outOffsetTable[ch] = 255;
          nContentCh += 1;
        }
      }
      if (isCompatible) {
        /* Assign the remaining input channels.
           This is just a safety appliance. We should never need it. */
        for (ch = 0; ch < (8); ch += 1) {
          if (inOffsetTable[ch] < 255) {
            int outCh;
            for (outCh = 0; outCh < (8); outCh += 1) {
              if (outOffsetTable[outCh] < 255) {
                break;
              }
            }
            if (outCh >= (8)) {
              FDK_ASSERT(0);
              break;
            }
            /* Set I/O pointer: */
            pIn[nContentCh] = &pPcmBuf[inOffsetTable[ch] * offset +
                                       (frameSize - 1) * inStride];
            pOut[nContentCh] = &pPcmBuf[outOffsetTable[outCh] * offset +
                                        (frameSize - 1) * outStride];
            /* Update signalling */
            FDK_ASSERT(inOffsetTable[outCh] < numInChannels);
            FDK_ASSERT(outOffsetTable[outCh] < numOutChannels);
            channelType[outOffsetTable[outCh]] = inChTypes[inOffsetTable[ch]];
            channelIndices[outOffsetTable[outCh]] =
                inChIndices[inOffsetTable[ch]];
            inOffsetTable[ch] = 255;
            outOffsetTable[outCh] = 255;
            nContentCh += 1;
          }
        }
        /* Set the remaining output channel pointer */
        for (ch = 0; ch < (8); ch += 1) {
          if (outOffsetTable[ch] < 255) {
            pOut[nContentCh + nEmptyCh] = &pPcmBuf[outOffsetTable[ch] * offset +
                                                   (frameSize - 1) * outStride];
            /* Expand output signalling */
            channelType[outOffsetTable[ch]] = ACT_NONE;
            channelIndices[outOffsetTable[ch]] = (UCHAR)nEmptyCh;
            outOffsetTable[ch] = 255;
            nEmptyCh += 1;
          }
        }
      } else {
        /* Set the remaining output channel pointer */
        for (ch = nContentCh; ch < numOutChannels; ch += 1) {
          pOut[ch] = &pPcmBuf[ch * offset + (frameSize - 1) * outStride];
          /* Expand output signalling */
          channelType[ch] = ACT_NONE;
          channelIndices[ch] = (UCHAR)nEmptyCh;
          nEmptyCh += 1;
        }
      }

      /* First copy the channels that have signal */
      for (sample = 0; sample < frameSize; sample += 1) {
        DMX_PCM tIn[(8)];
        /* Read all channel samples */
        for (ch = 0; ch < nContentCh; ch += 1) {
          tIn[ch] = *pIn[ch];
          pIn[ch] -= inStride;
        }
        /* Write all channel samples */
        for (ch = 0; ch < nContentCh; ch += 1) {
          *pOut[ch] = tIn[ch];
          pOut[ch] -= outStride;
        }
      }

      /* Clear all the other channels */
      for (sample = 0; sample < frameSize; sample++) {
        for (ch = nContentCh; ch < numOutChannels; ch += 1) {
          *pOut[ch] = (DMX_PCM)0;
          pOut[ch] -= outStride;
        }
      }
    }

    /* update the number of output channels */
    *nChannels = numOutChannels;
  } /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       - - - - - - - - - - - - - - - - - - */
  else if (numInChannels == numOutChannels) {
    /* Don't need to change the channel description here */

    switch (numInChannels) {
      case 2: { /* Set up channel pointer */
        DMX_PCM *pInPcm[(8)];
        DMX_PCM *pOutL, *pOutR;
        FIXP_DMX flev;

        UINT sample;

        if (fInterleaved) {
          inStride = numInChannels;
          outStride =
              2; /* fixed !!! (below stereo is donwmixed to mono if required */
          offset = 1; /* Channel specific offset factor */
        } else {
          inStride = 1;
          outStride = 1;
          offset = frameSize; /* Channel specific offset factor */
        }

        /* Set input channel pointer */
        pInPcm[LEFT_FRONT_CHANNEL] =
            &pPcmBuf[inOffsetTable[LEFT_FRONT_CHANNEL] * offset];
        pInPcm[RIGHT_FRONT_CHANNEL] =
            &pPcmBuf[inOffsetTable[RIGHT_FRONT_CHANNEL] * offset];

        /* Set output channel pointer (same as input) */
        pOutL = pInPcm[LEFT_FRONT_CHANNEL];
        pOutR = pInPcm[RIGHT_FRONT_CHANNEL];

        /* Set downmix levels: */
        flev = FL2FXCONST_DMX(0.70710678f);
        /* 2/0 input: */
        switch (dualChannelMode) {
          case CH1_MODE: /* L' = 0.707 * Ch1;  R' = 0.707 * Ch1 */
            for (sample = 0; sample < frameSize; sample++) {
              *pOutL = *pOutR = (DMX_PCM)SATURATE_RIGHT_SHIFT(
                  fMult((DMX_PCMF)*pInPcm[LEFT_FRONT_CHANNEL], flev),
                  DFRACT_BITS - DMX_PCM_BITS, DMX_PCM_BITS);

              pInPcm[LEFT_FRONT_CHANNEL] += inStride;
              pOutL += outStride;
              pOutR += outStride;
            }
            break;
          case CH2_MODE: /* L' = 0.707 * Ch2;  R' = 0.707 * Ch2 */
            for (sample = 0; sample < frameSize; sample++) {
              *pOutL = *pOutR = (DMX_PCM)SATURATE_RIGHT_SHIFT(
                  fMult((DMX_PCMF)*pInPcm[RIGHT_FRONT_CHANNEL], flev),
                  DFRACT_BITS - DMX_PCM_BITS, DMX_PCM_BITS);

              pInPcm[RIGHT_FRONT_CHANNEL] += inStride;
              pOutL += outStride;
              pOutR += outStride;
            }
            break;
          case MIXED_MODE: /* L' = 0.5*Ch1 + 0.5*Ch2;  R' = 0.5*Ch1 + 0.5*Ch2 */
            for (sample = 0; sample < frameSize; sample++) {
              *pOutL = *pOutR = (*pInPcm[LEFT_FRONT_CHANNEL] >> 1) +
                                (*pInPcm[RIGHT_FRONT_CHANNEL] >> 1);

              pInPcm[LEFT_FRONT_CHANNEL] += inStride;
              pInPcm[RIGHT_FRONT_CHANNEL] += inStride;
              pOutL += outStride;
              pOutR += outStride;
            }
            break;
          default:
          case STEREO_MODE:
            /* nothing to do */
            break;
        }
      } break;

      default:
        /* nothing to do */
        break;
    }
  }

  return (errorStatus);
}

/** Close an instance of the PCM downmix module.
 * @param [inout] Pointer to a buffer containing the handle of the instance.
 * @returns Returns an error code.
 **/
PCMDMX_ERROR pcmDmx_Close(HANDLE_PCM_DOWNMIX *pSelf) {
  if (pSelf == NULL) {
    return (PCMDMX_INVALID_HANDLE);
  }

  FreePcmDmxInstance(pSelf);
  *pSelf = NULL;

  return (PCMDMX_OK);
}

/** Get library info for this module.
 * @param [out] Pointer to an allocated LIB_INFO structure.
 * @returns Returns an error code.
 */
PCMDMX_ERROR pcmDmx_GetLibInfo(LIB_INFO *info) {
  int i;

  if (info == NULL) {
    return PCMDMX_INVALID_ARGUMENT;
  }

  /* Search for next free tab */
  for (i = 0; i < FDK_MODULE_LAST; i++) {
    if (info[i].module_id == FDK_NONE) break;
  }
  if (i == FDK_MODULE_LAST) {
    return PCMDMX_INVALID_ARGUMENT;
  }

  /* Add the library info */
  info[i].module_id = FDK_PCMDMX;
  info[i].version =
      LIB_VERSION(PCMUTIL_LIB_VL0, PCMUTIL_LIB_VL1, PCMUTIL_LIB_VL2);
  LIB_VERSION_STRING(info + i);
  info[i].build_date = PCMUTIL_LIB_BUILD_DATE;
  info[i].build_time = PCMUTIL_LIB_BUILD_TIME;
  info[i].title = PCMDMX_LIB_TITLE;

  /* Set flags */
  info[i].flags = 0 | CAPF_DMX_BLIND /* At least blind downmixing is possible */
                  | CAPF_DMX_PCE     /* Guided downmix with data from MPEG-2/4
                                        Program Config Elements (PCE). */
                  | CAPF_DMX_ARIB /* PCE guided downmix with slightly different
                                     equations and levels. */
                  | CAPF_DMX_DVB  /* Guided downmix with data from DVB ancillary
                                     data fields. */
                  | CAPF_DMX_CH_EXP /* Simple upmixing by dublicating channels
                                       or adding zero channels. */
                  | CAPF_DMX_6_CH | CAPF_DMX_8_CH;

  /* Add lib info for FDK tools (if not yet done). */
  FDK_toolsGetLibInfo(info);

  return PCMDMX_OK;
}