1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
|
/* -----------------------------------------------------------------------------
Software License for The Fraunhofer FDK AAC Codec Library for Android
© Copyright 1995 - 2019 Fraunhofer-Gesellschaft zur Förderung der angewandten
Forschung e.V. All rights reserved.
1. INTRODUCTION
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
scheme for digital audio. This FDK AAC Codec software is intended to be used on
a wide variety of Android devices.
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
general perceptual audio codecs. AAC-ELD is considered the best-performing
full-bandwidth communications codec by independent studies and is widely
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
specifications.
Patent licenses for necessary patent claims for the FDK AAC Codec (including
those of Fraunhofer) may be obtained through Via Licensing
(www.vialicensing.com) or through the respective patent owners individually for
the purpose of encoding or decoding bit streams in products that are compliant
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
Android devices already license these patent claims through Via Licensing or
directly from the patent owners, and therefore FDK AAC Codec software may
already be covered under those patent licenses when it is used for those
licensed purposes only.
Commercially-licensed AAC software libraries, including floating-point versions
with enhanced sound quality, are also available from Fraunhofer. Users are
encouraged to check the Fraunhofer website for additional applications
information and documentation.
2. COPYRIGHT LICENSE
Redistribution and use in source and binary forms, with or without modification,
are permitted without payment of copyright license fees provided that you
satisfy the following conditions:
You must retain the complete text of this software license in redistributions of
the FDK AAC Codec or your modifications thereto in source code form.
You must retain the complete text of this software license in the documentation
and/or other materials provided with redistributions of the FDK AAC Codec or
your modifications thereto in binary form. You must make available free of
charge copies of the complete source code of the FDK AAC Codec and your
modifications thereto to recipients of copies in binary form.
The name of Fraunhofer may not be used to endorse or promote products derived
from this library without prior written permission.
You may not charge copyright license fees for anyone to use, copy or distribute
the FDK AAC Codec software or your modifications thereto.
Your modified versions of the FDK AAC Codec must carry prominent notices stating
that you changed the software and the date of any change. For modified versions
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
AAC Codec Library for Android."
3. NO PATENT LICENSE
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
Fraunhofer provides no warranty of patent non-infringement with respect to this
software.
You may use this FDK AAC Codec software or modifications thereto only for
purposes that are authorized by appropriate patent licenses.
4. DISCLAIMER
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
including but not limited to the implied warranties of merchantability and
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
or consequential damages, including but not limited to procurement of substitute
goods or services; loss of use, data, or profits, or business interruption,
however caused and on any theory of liability, whether in contract, strict
liability, or tort (including negligence), arising in any way out of the use of
this software, even if advised of the possibility of such damage.
5. CONTACT INFORMATION
Fraunhofer Institute for Integrated Circuits IIS
Attention: Audio and Multimedia Departments - FDK AAC LL
Am Wolfsmantel 33
91058 Erlangen, Germany
www.iis.fraunhofer.de/amm
amm-info@iis.fraunhofer.de
----------------------------------------------------------------------------- */
/******************* Library for basic calculation routines ********************
Author(s):
Description:
*******************************************************************************/
/*!
\file dct.cpp
\brief DCT Implementations
Library functions to calculate standard DCTs. This will most likely be
replaced by hand-optimized functions for the specific target processor.
Three different implementations of the dct type II and the dct type III
transforms are provided.
By default implementations which are based on a single, standard complex
FFT-kernel are used (dctII_f() and dctIII_f()). These are specifically helpful
in cases where optimized FFT libraries are already available. The FFT used in
these implementation is FFT rad2 from FDK_tools.
Of course, one might also use DCT-libraries should they be available. The DCT
and DST type IV implementations are only available in a version based on a
complex FFT kernel.
*/
#include "dct.h"
#include "FDK_tools_rom.h"
#include "fft.h"
void dct_getTables(const FIXP_WTP **ptwiddle, const FIXP_STP **sin_twiddle,
int *sin_step, int length) {
const FIXP_WTP *twiddle;
int ld2_length;
/* Get ld2 of length - 2 + 1
-2: because first table entry is window of size 4
+1: because we already include +1 because of ceil(log2(length)) */
ld2_length = DFRACT_BITS - 1 - fNormz((FIXP_DBL)length) - 1;
/* Extract sort of "eigenvalue" (the 4 left most bits) of length. */
switch ((length) >> (ld2_length - 1)) {
case 0x4: /* radix 2 */
*sin_twiddle = SineTable1024;
*sin_step = 1 << (10 - ld2_length);
twiddle = windowSlopes[0][0][ld2_length - 1];
break;
case 0x7: /* 10 ms */
*sin_twiddle = SineTable480;
*sin_step = 1 << (8 - ld2_length);
twiddle = windowSlopes[0][1][ld2_length];
break;
case 0x6: /* 3/4 of radix 2 */
*sin_twiddle = SineTable384;
*sin_step = 1 << (8 - ld2_length);
twiddle = windowSlopes[0][2][ld2_length];
break;
case 0x5: /* 5/16 of radix 2*/
*sin_twiddle = SineTable80;
*sin_step = 1 << (6 - ld2_length);
twiddle = windowSlopes[0][3][ld2_length];
break;
default:
*sin_twiddle = NULL;
*sin_step = 0;
twiddle = NULL;
break;
}
if (ptwiddle != NULL) {
FDK_ASSERT(twiddle != NULL);
*ptwiddle = twiddle;
}
FDK_ASSERT(*sin_step > 0);
}
#if !defined(FUNCTION_dct_III)
void dct_III(FIXP_DBL *pDat, /*!< pointer to input/output */
FIXP_DBL *tmp, /*!< pointer to temporal working buffer */
int L, /*!< lenght of transform */
int *pDat_e) {
const FIXP_WTP *sin_twiddle;
int i;
FIXP_DBL xr, accu1, accu2;
int inc, index;
int M = L >> 1;
FDK_ASSERT(L % 4 == 0);
dct_getTables(NULL, &sin_twiddle, &inc, L);
inc >>= 1;
FIXP_DBL *pTmp_0 = &tmp[2];
FIXP_DBL *pTmp_1 = &tmp[(M - 1) * 2];
index = 4 * inc;
/* This loop performs multiplication for index i (i*inc) */
for (i = 1; i<M>> 1; i++, pTmp_0 += 2, pTmp_1 -= 2) {
FIXP_DBL accu3, accu4, accu5, accu6;
cplxMultDiv2(&accu2, &accu1, pDat[L - i], pDat[i], sin_twiddle[i * inc]);
cplxMultDiv2(&accu4, &accu3, pDat[M + i], pDat[M - i],
sin_twiddle[(M - i) * inc]);
accu3 >>= 1;
accu4 >>= 1;
/* This method is better for ARM926, that uses operand2 shifted right by 1
* always */
if (2 * i < (M / 2)) {
cplxMultDiv2(&accu6, &accu5, (accu3 - (accu1 >> 1)),
((accu2 >> 1) + accu4), sin_twiddle[index]);
} else {
cplxMultDiv2(&accu6, &accu5, ((accu2 >> 1) + accu4),
(accu3 - (accu1 >> 1)), sin_twiddle[index]);
accu6 = -accu6;
}
xr = (accu1 >> 1) + accu3;
pTmp_0[0] = (xr >> 1) - accu5;
pTmp_1[0] = (xr >> 1) + accu5;
xr = (accu2 >> 1) - accu4;
pTmp_0[1] = (xr >> 1) - accu6;
pTmp_1[1] = -((xr >> 1) + accu6);
/* Create index helper variables for (4*i)*inc indexed equivalent values of
* short tables. */
if (2 * i < ((M / 2) - 1)) {
index += 4 * inc;
} else if (2 * i >= ((M / 2))) {
index -= 4 * inc;
}
}
xr = fMultDiv2(pDat[M], sin_twiddle[M * inc].v.re); /* cos((PI/(2*L))*M); */
tmp[0] = ((pDat[0] >> 1) + xr) >> 1;
tmp[1] = ((pDat[0] >> 1) - xr) >> 1;
cplxMultDiv2(&accu2, &accu1, pDat[L - (M / 2)], pDat[M / 2],
sin_twiddle[M * inc / 2]);
tmp[M] = accu1 >> 1;
tmp[M + 1] = accu2 >> 1;
/* dit_fft expects 1 bit scaled input values */
fft(M, tmp, pDat_e);
/* ARM926: 12 cycles per 2-iteration, no overhead code by compiler */
pTmp_1 = &tmp[L];
for (i = M >> 1; i--;) {
FIXP_DBL tmp1, tmp2, tmp3, tmp4;
tmp1 = *tmp++;
tmp2 = *tmp++;
tmp3 = *--pTmp_1;
tmp4 = *--pTmp_1;
*pDat++ = tmp1;
*pDat++ = tmp3;
*pDat++ = tmp2;
*pDat++ = tmp4;
}
*pDat_e += 2;
}
void dst_III(FIXP_DBL *pDat, /*!< pointer to input/output */
FIXP_DBL *tmp, /*!< pointer to temporal working buffer */
int L, /*!< lenght of transform */
int *pDat_e) {
int L2 = L >> 1;
int i;
FIXP_DBL t;
/* note: DCT III is reused here, direct DST III implementation might be more
* efficient */
/* mirror input */
for (i = 0; i < L2; i++) {
t = pDat[i];
pDat[i] = pDat[L - 1 - i];
pDat[L - 1 - i] = t;
}
/* DCT-III */
dct_III(pDat, tmp, L, pDat_e);
/* flip signs at odd indices */
for (i = 1; i < L; i += 2) pDat[i] = -pDat[i];
}
#endif
#if !defined(FUNCTION_dct_II)
void dct_II(
FIXP_DBL *pDat, /*!< pointer to input/output */
FIXP_DBL *tmp, /*!< pointer to temporal working buffer */
int L, /*!< lenght of transform (has to be a multiple of 8 (or 4 in case
DCT_II_L_MULTIPLE_OF_4_SUPPORT is defined) */
int *pDat_e) {
const FIXP_WTP *sin_twiddle;
FIXP_DBL accu1, accu2;
FIXP_DBL *pTmp_0, *pTmp_1;
int i;
int inc, index = 0;
int M = L >> 1;
FDK_ASSERT(L % 4 == 0);
dct_getTables(NULL, &sin_twiddle, &inc, L);
inc >>= 1;
{
for (i = 0; i < M; i++) {
tmp[i] = pDat[2 * i] >> 1; /* dit_fft expects 1 bit scaled input values */
tmp[L - 1 - i] =
pDat[2 * i + 1] >> 1; /* dit_fft expects 1 bit scaled input values */
}
}
fft(M, tmp, pDat_e);
pTmp_0 = &tmp[2];
pTmp_1 = &tmp[(M - 1) * 2];
index = inc * 4;
for (i = 1; i<M>> 1; i++, pTmp_0 += 2, pTmp_1 -= 2) {
FIXP_DBL a1, a2;
FIXP_DBL accu3, accu4;
a1 = ((pTmp_0[1] >> 1) + (pTmp_1[1] >> 1));
a2 = ((pTmp_1[0] >> 1) - (pTmp_0[0] >> 1));
if (2 * i < (M / 2)) {
cplxMultDiv2(&accu1, &accu2, a2, a1, sin_twiddle[index]);
} else {
cplxMultDiv2(&accu1, &accu2, a1, a2, sin_twiddle[index]);
accu1 = -accu1;
}
accu1 <<= 1;
accu2 <<= 1;
a1 = ((pTmp_0[0] >> 1) + (pTmp_1[0] >> 1));
a2 = ((pTmp_0[1] >> 1) - (pTmp_1[1] >> 1));
cplxMultDiv2(&accu3, &accu4, (a1 + accu2), -(accu1 + a2),
sin_twiddle[i * inc]);
pDat[L - i] = accu4;
pDat[i] = accu3;
cplxMultDiv2(&accu3, &accu4, (a1 - accu2), -(accu1 - a2),
sin_twiddle[(M - i) * inc]);
pDat[M + i] = accu4;
pDat[M - i] = accu3;
/* Create index helper variables for (4*i)*inc indexed equivalent values of
* short tables. */
if (2 * i < ((M / 2) - 1)) {
index += 4 * inc;
} else if (2 * i >= ((M / 2))) {
index -= 4 * inc;
}
}
cplxMultDiv2(&accu1, &accu2, tmp[M], tmp[M + 1], sin_twiddle[(M / 2) * inc]);
pDat[L - (M / 2)] = accu2;
pDat[M / 2] = accu1;
pDat[0] = (tmp[0] >> 1) + (tmp[1] >> 1);
pDat[M] = fMult(((tmp[0] >> 1) - (tmp[1] >> 1)),
sin_twiddle[M * inc].v.re); /* cos((PI/(2*L))*M); */
*pDat_e += 2;
}
#endif
#if !defined(FUNCTION_dct_IV)
void dct_IV(FIXP_DBL *pDat, int L, int *pDat_e) {
int sin_step = 0;
int M = L >> 1;
const FIXP_WTP *twiddle;
const FIXP_STP *sin_twiddle;
FDK_ASSERT(L >= 4);
FDK_ASSERT(L >= 4);
dct_getTables(&twiddle, &sin_twiddle, &sin_step, L);
{
FIXP_DBL *RESTRICT pDat_0 = &pDat[0];
FIXP_DBL *RESTRICT pDat_1 = &pDat[L - 2];
int i;
/* 29 cycles on ARM926 */
for (i = 0; i < M - 1; i += 2, pDat_0 += 2, pDat_1 -= 2) {
FIXP_DBL accu1, accu2, accu3, accu4;
accu1 = pDat_1[1];
accu2 = pDat_0[0];
accu3 = pDat_0[1];
accu4 = pDat_1[0];
cplxMultDiv2(&accu1, &accu2, accu1, accu2, twiddle[i]);
cplxMultDiv2(&accu3, &accu4, accu4, accu3, twiddle[i + 1]);
pDat_0[0] = accu2 >> 1;
pDat_0[1] = accu1 >> 1;
pDat_1[0] = accu4 >> 1;
pDat_1[1] = -(accu3 >> 1);
}
if (M & 1) {
FIXP_DBL accu1, accu2;
accu1 = pDat_1[1];
accu2 = pDat_0[0];
cplxMultDiv2(&accu1, &accu2, accu1, accu2, twiddle[i]);
pDat_0[0] = accu2 >> 1;
pDat_0[1] = accu1 >> 1;
}
}
fft(M, pDat, pDat_e);
{
FIXP_DBL *RESTRICT pDat_0 = &pDat[0];
FIXP_DBL *RESTRICT pDat_1 = &pDat[L - 2];
FIXP_DBL accu1, accu2, accu3, accu4;
int idx, i;
/* Sin and Cos values are 0.0f and 1.0f */
accu1 = pDat_1[0];
accu2 = pDat_1[1];
pDat_1[1] = -pDat_0[1];
/* 28 cycles for ARM926 */
for (idx = sin_step, i = 1; i<(M + 1)>> 1; i++, idx += sin_step) {
FIXP_STP twd = sin_twiddle[idx];
cplxMult(&accu3, &accu4, accu1, accu2, twd);
pDat_0[1] = accu3;
pDat_1[0] = accu4;
pDat_0 += 2;
pDat_1 -= 2;
cplxMult(&accu3, &accu4, pDat_0[1], pDat_0[0], twd);
accu1 = pDat_1[0];
accu2 = pDat_1[1];
pDat_1[1] = -accu3;
pDat_0[0] = accu4;
}
if ((M & 1) == 0) {
/* Last Sin and Cos value pair are the same */
accu1 = fMult(accu1, WTC(0x5a82799a));
accu2 = fMult(accu2, WTC(0x5a82799a));
pDat_1[0] = accu1 + accu2;
pDat_0[1] = accu1 - accu2;
}
}
/* Add twiddeling scale. */
*pDat_e += 2;
}
#endif /* defined (FUNCTION_dct_IV) */
#if !defined(FUNCTION_dst_IV)
void dst_IV(FIXP_DBL *pDat, int L, int *pDat_e) {
int sin_step = 0;
int M = L >> 1;
const FIXP_WTP *twiddle;
const FIXP_STP *sin_twiddle;
FDK_ASSERT(L >= 4);
FDK_ASSERT(L >= 4);
dct_getTables(&twiddle, &sin_twiddle, &sin_step, L);
{
FIXP_DBL *RESTRICT pDat_0 = &pDat[0];
FIXP_DBL *RESTRICT pDat_1 = &pDat[L - 2];
int i;
/* 34 cycles on ARM926 */
for (i = 0; i < M - 1; i += 2, pDat_0 += 2, pDat_1 -= 2) {
FIXP_DBL accu1, accu2, accu3, accu4;
accu1 = pDat_1[1] >> 1;
accu2 = -(pDat_0[0] >> 1);
accu3 = pDat_0[1] >> 1;
accu4 = -(pDat_1[0] >> 1);
cplxMultDiv2(&accu1, &accu2, accu1, accu2, twiddle[i]);
cplxMultDiv2(&accu3, &accu4, accu4, accu3, twiddle[i + 1]);
pDat_0[0] = accu2;
pDat_0[1] = accu1;
pDat_1[0] = accu4;
pDat_1[1] = -accu3;
}
if (M & 1) {
FIXP_DBL accu1, accu2;
accu1 = pDat_1[1];
accu2 = -pDat_0[0];
cplxMultDiv2(&accu1, &accu2, accu1, accu2, twiddle[i]);
pDat_0[0] = accu2 >> 1;
pDat_0[1] = accu1 >> 1;
}
}
fft(M, pDat, pDat_e);
{
FIXP_DBL *RESTRICT pDat_0;
FIXP_DBL *RESTRICT pDat_1;
FIXP_DBL accu1, accu2, accu3, accu4;
int idx, i;
pDat_0 = &pDat[0];
pDat_1 = &pDat[L - 2];
/* Sin and Cos values are 0.0f and 1.0f */
accu1 = pDat_1[0];
accu2 = pDat_1[1];
pDat_1[1] = -pDat_0[0];
pDat_0[0] = pDat_0[1];
for (idx = sin_step, i = 1; i<(M + 1)>> 1; i++, idx += sin_step) {
FIXP_STP twd = sin_twiddle[idx];
cplxMult(&accu3, &accu4, accu1, accu2, twd);
pDat_1[0] = -accu3;
pDat_0[1] = -accu4;
pDat_0 += 2;
pDat_1 -= 2;
cplxMult(&accu3, &accu4, pDat_0[1], pDat_0[0], twd);
accu1 = pDat_1[0];
accu2 = pDat_1[1];
pDat_0[0] = accu3;
pDat_1[1] = -accu4;
}
if ((M & 1) == 0) {
/* Last Sin and Cos value pair are the same */
accu1 = fMult(accu1, WTC(0x5a82799a));
accu2 = fMult(accu2, WTC(0x5a82799a));
pDat_0[1] = -accu1 - accu2;
pDat_1[0] = accu2 - accu1;
}
}
/* Add twiddeling scale. */
*pDat_e += 2;
}
#endif /* !defined(FUNCTION_dst_IV) */
|