1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
|
/* -----------------------------------------------------------------------------
Software License for The Fraunhofer FDK AAC Codec Library for Android
© Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
Forschung e.V. All rights reserved.
1. INTRODUCTION
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
scheme for digital audio. This FDK AAC Codec software is intended to be used on
a wide variety of Android devices.
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
general perceptual audio codecs. AAC-ELD is considered the best-performing
full-bandwidth communications codec by independent studies and is widely
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
specifications.
Patent licenses for necessary patent claims for the FDK AAC Codec (including
those of Fraunhofer) may be obtained through Via Licensing
(www.vialicensing.com) or through the respective patent owners individually for
the purpose of encoding or decoding bit streams in products that are compliant
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
Android devices already license these patent claims through Via Licensing or
directly from the patent owners, and therefore FDK AAC Codec software may
already be covered under those patent licenses when it is used for those
licensed purposes only.
Commercially-licensed AAC software libraries, including floating-point versions
with enhanced sound quality, are also available from Fraunhofer. Users are
encouraged to check the Fraunhofer website for additional applications
information and documentation.
2. COPYRIGHT LICENSE
Redistribution and use in source and binary forms, with or without modification,
are permitted without payment of copyright license fees provided that you
satisfy the following conditions:
You must retain the complete text of this software license in redistributions of
the FDK AAC Codec or your modifications thereto in source code form.
You must retain the complete text of this software license in the documentation
and/or other materials provided with redistributions of the FDK AAC Codec or
your modifications thereto in binary form. You must make available free of
charge copies of the complete source code of the FDK AAC Codec and your
modifications thereto to recipients of copies in binary form.
The name of Fraunhofer may not be used to endorse or promote products derived
from this library without prior written permission.
You may not charge copyright license fees for anyone to use, copy or distribute
the FDK AAC Codec software or your modifications thereto.
Your modified versions of the FDK AAC Codec must carry prominent notices stating
that you changed the software and the date of any change. For modified versions
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
AAC Codec Library for Android."
3. NO PATENT LICENSE
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
Fraunhofer provides no warranty of patent non-infringement with respect to this
software.
You may use this FDK AAC Codec software or modifications thereto only for
purposes that are authorized by appropriate patent licenses.
4. DISCLAIMER
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
including but not limited to the implied warranties of merchantability and
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
or consequential damages, including but not limited to procurement of substitute
goods or services; loss of use, data, or profits, or business interruption,
however caused and on any theory of liability, whether in contract, strict
liability, or tort (including negligence), arising in any way out of the use of
this software, even if advised of the possibility of such damage.
5. CONTACT INFORMATION
Fraunhofer Institute for Integrated Circuits IIS
Attention: Audio and Multimedia Departments - FDK AAC LL
Am Wolfsmantel 33
91058 Erlangen, Germany
www.iis.fraunhofer.de/amm
amm-info@iis.fraunhofer.de
----------------------------------------------------------------------------- */
/**************************** AAC encoder library ******************************
Author(s): M.Werner
Description: Psychoaccoustic major function block
*******************************************************************************/
#include "psy_const.h"
#include "block_switch.h"
#include "transform.h"
#include "spreading.h"
#include "pre_echo_control.h"
#include "band_nrg.h"
#include "psy_configuration.h"
#include "psy_data.h"
#include "ms_stereo.h"
#include "interface.h"
#include "psy_main.h"
#include "grp_data.h"
#include "tns_func.h"
#include "pns_func.h"
#include "tonality.h"
#include "aacEnc_ram.h"
#include "intensity.h"
/* blending to reduce gibbs artifacts */
#define FADE_OUT_LEN 6
static const FIXP_DBL fadeOutFactor[FADE_OUT_LEN] = {
1840644096, 1533870080, 1227096064, 920322048, 613548032, 306774016};
/* forward definitions */
/*****************************************************************************
functionname: FDKaacEnc_PsyNew
description: allocates memory for psychoacoustic
returns: an error code
input: pointer to a psych handle
*****************************************************************************/
AAC_ENCODER_ERROR FDKaacEnc_PsyNew(PSY_INTERNAL **phpsy, const INT nElements,
const INT nChannels, UCHAR *dynamic_RAM) {
AAC_ENCODER_ERROR ErrorStatus;
PSY_INTERNAL *hPsy;
INT i;
hPsy = GetRam_aacEnc_PsyInternal();
*phpsy = hPsy;
if (hPsy == NULL) {
ErrorStatus = AAC_ENC_NO_MEMORY;
goto bail;
}
for (i = 0; i < nElements; i++) {
/* PSY_ELEMENT */
hPsy->psyElement[i] = GetRam_aacEnc_PsyElement(i);
if (hPsy->psyElement[i] == NULL) {
ErrorStatus = AAC_ENC_NO_MEMORY;
goto bail;
}
}
for (i = 0; i < nChannels; i++) {
/* PSY_STATIC */
hPsy->pStaticChannels[i] = GetRam_aacEnc_PsyStatic(i);
if (hPsy->pStaticChannels[i] == NULL) {
ErrorStatus = AAC_ENC_NO_MEMORY;
goto bail;
}
/* AUDIO INPUT BUFFER */
hPsy->pStaticChannels[i]->psyInputBuffer = GetRam_aacEnc_PsyInputBuffer(i);
if (hPsy->pStaticChannels[i]->psyInputBuffer == NULL) {
ErrorStatus = AAC_ENC_NO_MEMORY;
goto bail;
}
}
/* reusable psych memory */
hPsy->psyDynamic = GetRam_aacEnc_PsyDynamic(0, dynamic_RAM);
return AAC_ENC_OK;
bail:
FDKaacEnc_PsyClose(phpsy, NULL);
return ErrorStatus;
}
/*****************************************************************************
functionname: FDKaacEnc_PsyOutNew
description: allocates memory for psyOut struc
returns: an error code
input: pointer to a psych handle
*****************************************************************************/
AAC_ENCODER_ERROR FDKaacEnc_PsyOutNew(PSY_OUT **phpsyOut, const INT nElements,
const INT nChannels, const INT nSubFrames,
UCHAR *dynamic_RAM) {
AAC_ENCODER_ERROR ErrorStatus;
int n, i;
int elInc = 0, chInc = 0;
for (n = 0; n < nSubFrames; n++) {
phpsyOut[n] = GetRam_aacEnc_PsyOut(n);
if (phpsyOut[n] == NULL) {
ErrorStatus = AAC_ENC_NO_MEMORY;
goto bail;
}
for (i = 0; i < nChannels; i++) {
phpsyOut[n]->pPsyOutChannels[i] = GetRam_aacEnc_PsyOutChannel(chInc++);
if (NULL == phpsyOut[n]->pPsyOutChannels[i]) {
ErrorStatus = AAC_ENC_NO_MEMORY;
goto bail;
}
}
for (i = 0; i < nElements; i++) {
phpsyOut[n]->psyOutElement[i] = GetRam_aacEnc_PsyOutElements(elInc++);
if (phpsyOut[n]->psyOutElement[i] == NULL) {
ErrorStatus = AAC_ENC_NO_MEMORY;
goto bail;
}
}
} /* nSubFrames */
return AAC_ENC_OK;
bail:
FDKaacEnc_PsyClose(NULL, phpsyOut);
return ErrorStatus;
}
AAC_ENCODER_ERROR FDKaacEnc_psyInitStates(PSY_INTERNAL *hPsy,
PSY_STATIC *psyStatic,
AUDIO_OBJECT_TYPE audioObjectType) {
/* init input buffer */
FDKmemclear(psyStatic->psyInputBuffer,
MAX_INPUT_BUFFER_SIZE * sizeof(INT_PCM));
FDKaacEnc_InitBlockSwitching(&psyStatic->blockSwitchingControl,
isLowDelay(audioObjectType));
return AAC_ENC_OK;
}
AAC_ENCODER_ERROR FDKaacEnc_psyInit(PSY_INTERNAL *hPsy, PSY_OUT **phpsyOut,
const INT nSubFrames,
const INT nMaxChannels,
const AUDIO_OBJECT_TYPE audioObjectType,
CHANNEL_MAPPING *cm) {
AAC_ENCODER_ERROR ErrorStatus = AAC_ENC_OK;
int i, ch, n, chInc = 0, resetChannels = 3;
if ((nMaxChannels > 2) && (cm->nChannels == 2)) {
chInc = 1;
FDKaacEnc_psyInitStates(hPsy, hPsy->pStaticChannels[0], audioObjectType);
}
if ((nMaxChannels == 2)) {
resetChannels = 0;
}
for (i = 0; i < cm->nElements; i++) {
for (ch = 0; ch < cm->elInfo[i].nChannelsInEl; ch++) {
hPsy->psyElement[i]->psyStatic[ch] = hPsy->pStaticChannels[chInc];
if (cm->elInfo[i].elType != ID_LFE) {
if (chInc >= resetChannels) {
FDKaacEnc_psyInitStates(hPsy, hPsy->psyElement[i]->psyStatic[ch],
audioObjectType);
}
mdct_init(&(hPsy->psyElement[i]->psyStatic[ch]->mdctPers), NULL, 0);
hPsy->psyElement[i]->psyStatic[ch]->isLFE = 0;
} else {
hPsy->psyElement[i]->psyStatic[ch]->isLFE = 1;
}
chInc++;
}
}
for (n = 0; n < nSubFrames; n++) {
chInc = 0;
for (i = 0; i < cm->nElements; i++) {
for (ch = 0; ch < cm->elInfo[i].nChannelsInEl; ch++) {
phpsyOut[n]->psyOutElement[i]->psyOutChannel[ch] =
phpsyOut[n]->pPsyOutChannels[chInc++];
}
}
}
return ErrorStatus;
}
/*****************************************************************************
functionname: FDKaacEnc_psyMainInit
description: initializes psychoacoustic
returns: an error code
*****************************************************************************/
AAC_ENCODER_ERROR FDKaacEnc_psyMainInit(
PSY_INTERNAL *hPsy, AUDIO_OBJECT_TYPE audioObjectType, CHANNEL_MAPPING *cm,
INT sampleRate, INT granuleLength, INT bitRate, INT tnsMask, INT bandwidth,
INT usePns, INT useIS, INT useMS, UINT syntaxFlags, ULONG initFlags) {
AAC_ENCODER_ERROR ErrorStatus;
int i, ch;
int channelsEff = cm->nChannelsEff;
int tnsChannels = 0;
FB_TYPE filterBank;
switch (FDKaacEnc_GetMonoStereoMode(cm->encMode)) {
/* ... and map to tnsChannels */
case EL_MODE_MONO:
tnsChannels = 1;
break;
case EL_MODE_STEREO:
tnsChannels = 2;
break;
default:
tnsChannels = 0;
}
switch (audioObjectType) {
default:
filterBank = FB_LC;
break;
case AOT_ER_AAC_LD:
filterBank = FB_LD;
break;
case AOT_ER_AAC_ELD:
filterBank = FB_ELD;
break;
}
hPsy->granuleLength = granuleLength;
ErrorStatus = FDKaacEnc_InitPsyConfiguration(
bitRate / channelsEff, sampleRate, bandwidth, LONG_WINDOW,
hPsy->granuleLength, useIS, useMS, &(hPsy->psyConf[0]), filterBank);
if (ErrorStatus != AAC_ENC_OK) return ErrorStatus;
ErrorStatus = FDKaacEnc_InitTnsConfiguration(
(bitRate * tnsChannels) / channelsEff, sampleRate, tnsChannels,
LONG_WINDOW, hPsy->granuleLength, isLowDelay(audioObjectType),
(syntaxFlags & AC_SBR_PRESENT) ? 1 : 0, &(hPsy->psyConf[0].tnsConf),
&hPsy->psyConf[0], (INT)(tnsMask & 2), (INT)(tnsMask & 8));
if (ErrorStatus != AAC_ENC_OK) return ErrorStatus;
if (granuleLength > 512) {
ErrorStatus = FDKaacEnc_InitPsyConfiguration(
bitRate / channelsEff, sampleRate, bandwidth, SHORT_WINDOW,
hPsy->granuleLength, useIS, useMS, &hPsy->psyConf[1], filterBank);
if (ErrorStatus != AAC_ENC_OK) return ErrorStatus;
ErrorStatus = FDKaacEnc_InitTnsConfiguration(
(bitRate * tnsChannels) / channelsEff, sampleRate, tnsChannels,
SHORT_WINDOW, hPsy->granuleLength, isLowDelay(audioObjectType),
(syntaxFlags & AC_SBR_PRESENT) ? 1 : 0, &hPsy->psyConf[1].tnsConf,
&hPsy->psyConf[1], (INT)(tnsMask & 1), (INT)(tnsMask & 4));
if (ErrorStatus != AAC_ENC_OK) return ErrorStatus;
}
for (i = 0; i < cm->nElements; i++) {
for (ch = 0; ch < cm->elInfo[i].nChannelsInEl; ch++) {
if (initFlags) {
/* reset states */
FDKaacEnc_psyInitStates(hPsy, hPsy->psyElement[i]->psyStatic[ch],
audioObjectType);
}
FDKaacEnc_InitPreEchoControl(
hPsy->psyElement[i]->psyStatic[ch]->sfbThresholdnm1,
&hPsy->psyElement[i]->psyStatic[ch]->calcPreEcho,
hPsy->psyConf[0].sfbCnt, hPsy->psyConf[0].sfbPcmQuantThreshold,
&hPsy->psyElement[i]->psyStatic[ch]->mdctScalenm1);
}
}
ErrorStatus = FDKaacEnc_InitPnsConfiguration(
&hPsy->psyConf[0].pnsConf, bitRate / channelsEff, sampleRate, usePns,
hPsy->psyConf[0].sfbCnt, hPsy->psyConf[0].sfbOffset,
cm->elInfo[0].nChannelsInEl, (hPsy->psyConf[0].filterbank == FB_LC));
if (ErrorStatus != AAC_ENC_OK) return ErrorStatus;
if (granuleLength > 512) {
ErrorStatus = FDKaacEnc_InitPnsConfiguration(
&hPsy->psyConf[1].pnsConf, bitRate / channelsEff, sampleRate, usePns,
hPsy->psyConf[1].sfbCnt, hPsy->psyConf[1].sfbOffset,
cm->elInfo[1].nChannelsInEl, (hPsy->psyConf[1].filterbank == FB_LC));
if (ErrorStatus != AAC_ENC_OK) return ErrorStatus;
}
return ErrorStatus;
}
/*****************************************************************************
functionname: FDKaacEnc_psyMain
description: psychoacoustic
returns: an error code
This function assumes that enough input data is in the modulo buffer.
*****************************************************************************/
AAC_ENCODER_ERROR FDKaacEnc_psyMain(INT channels, PSY_ELEMENT *psyElement,
PSY_DYNAMIC *psyDynamic,
PSY_CONFIGURATION *psyConf,
PSY_OUT_ELEMENT *RESTRICT psyOutElement,
INT_PCM *pInput, const UINT inputBufSize,
INT *chIdx, INT totalChannels) {
const INT commonWindow = 1;
INT maxSfbPerGroup[(2)];
INT mdctSpectrum_e;
INT ch; /* counts through channels */
INT w; /* counts through windows */
INT sfb; /* counts through scalefactor bands */
INT line; /* counts through lines */
PSY_CONFIGURATION *RESTRICT hPsyConfLong = &psyConf[0];
PSY_CONFIGURATION *RESTRICT hPsyConfShort = &psyConf[1];
PSY_OUT_CHANNEL **RESTRICT psyOutChannel = psyOutElement->psyOutChannel;
FIXP_SGL sfbTonality[(2)][MAX_SFB_LONG];
PSY_STATIC **RESTRICT psyStatic = psyElement->psyStatic;
PSY_DATA *RESTRICT psyData[(2)];
TNS_DATA *RESTRICT tnsData[(2)];
PNS_DATA *RESTRICT pnsData[(2)];
INT zeroSpec = TRUE; /* means all spectral lines are zero */
INT blockSwitchingOffset;
PSY_CONFIGURATION *RESTRICT hThisPsyConf[(2)];
INT windowLength[(2)];
INT nWindows[(2)];
INT wOffset;
INT maxSfb[(2)];
INT *pSfbMaxScaleSpec[(2)];
FIXP_DBL *pSfbEnergy[(2)];
FIXP_DBL *pSfbSpreadEnergy[(2)];
FIXP_DBL *pSfbEnergyLdData[(2)];
FIXP_DBL *pSfbEnergyMS[(2)];
FIXP_DBL *pSfbThreshold[(2)];
INT isShortWindow[(2)];
/* number of incoming time samples to be processed */
const INT nTimeSamples = psyConf->granuleLength;
switch (hPsyConfLong->filterbank) {
case FB_LC:
blockSwitchingOffset =
nTimeSamples + (9 * nTimeSamples / (2 * TRANS_FAC));
break;
case FB_LD:
case FB_ELD:
blockSwitchingOffset = nTimeSamples;
break;
default:
return AAC_ENC_UNSUPPORTED_FILTERBANK;
}
for (ch = 0; ch < channels; ch++) {
psyData[ch] = &psyDynamic->psyData[ch];
tnsData[ch] = &psyDynamic->tnsData[ch];
pnsData[ch] = &psyDynamic->pnsData[ch];
psyData[ch]->mdctSpectrum = psyOutChannel[ch]->mdctSpectrum;
}
/* block switching */
if (hPsyConfLong->filterbank != FB_ELD) {
int err;
for (ch = 0; ch < channels; ch++) {
C_ALLOC_SCRATCH_START(pTimeSignal, INT_PCM, (1024))
/* copy input data and use for block switching */
FDKmemcpy(pTimeSignal, pInput + chIdx[ch] * inputBufSize,
nTimeSamples * sizeof(INT_PCM));
FDKaacEnc_BlockSwitching(&psyStatic[ch]->blockSwitchingControl,
nTimeSamples, psyStatic[ch]->isLFE, pTimeSignal);
/* fill up internal input buffer, to 2xframelength samples */
FDKmemcpy(psyStatic[ch]->psyInputBuffer + blockSwitchingOffset,
pTimeSignal,
(2 * nTimeSamples - blockSwitchingOffset) * sizeof(INT_PCM));
C_ALLOC_SCRATCH_END(pTimeSignal, INT_PCM, (1024))
}
/* synch left and right block type */
err = FDKaacEnc_SyncBlockSwitching(
&psyStatic[0]->blockSwitchingControl,
(channels > 1) ? &psyStatic[1]->blockSwitchingControl : NULL, channels,
commonWindow);
if (err) {
return AAC_ENC_UNSUPPORTED_AOT; /* mixed up LC and LD */
}
} else {
for (ch = 0; ch < channels; ch++) {
/* copy input data and use for block switching */
FDKmemcpy(psyStatic[ch]->psyInputBuffer + blockSwitchingOffset,
pInput + chIdx[ch] * inputBufSize,
nTimeSamples * sizeof(INT_PCM));
}
}
for (ch = 0; ch < channels; ch++)
isShortWindow[ch] =
(psyStatic[ch]->blockSwitchingControl.lastWindowSequence ==
SHORT_WINDOW);
/* set parameters according to window length */
for (ch = 0; ch < channels; ch++) {
if (isShortWindow[ch]) {
hThisPsyConf[ch] = hPsyConfShort;
windowLength[ch] = psyConf->granuleLength / TRANS_FAC;
nWindows[ch] = TRANS_FAC;
maxSfb[ch] = MAX_SFB_SHORT;
pSfbMaxScaleSpec[ch] = psyData[ch]->sfbMaxScaleSpec.Short[0];
pSfbEnergy[ch] = psyData[ch]->sfbEnergy.Short[0];
pSfbSpreadEnergy[ch] = psyData[ch]->sfbSpreadEnergy.Short[0];
pSfbEnergyLdData[ch] = psyData[ch]->sfbEnergyLdData.Short[0];
pSfbEnergyMS[ch] = psyData[ch]->sfbEnergyMS.Short[0];
pSfbThreshold[ch] = psyData[ch]->sfbThreshold.Short[0];
} else {
hThisPsyConf[ch] = hPsyConfLong;
windowLength[ch] = psyConf->granuleLength;
nWindows[ch] = 1;
maxSfb[ch] = MAX_GROUPED_SFB;
pSfbMaxScaleSpec[ch] = psyData[ch]->sfbMaxScaleSpec.Long;
pSfbEnergy[ch] = psyData[ch]->sfbEnergy.Long;
pSfbSpreadEnergy[ch] = psyData[ch]->sfbSpreadEnergy.Long;
pSfbEnergyLdData[ch] = psyData[ch]->sfbEnergyLdData.Long;
pSfbEnergyMS[ch] = psyData[ch]->sfbEnergyMS.Long;
pSfbThreshold[ch] = psyData[ch]->sfbThreshold.Long;
}
}
/* Transform and get mdctScaling for all channels and windows. */
for (ch = 0; ch < channels; ch++) {
/* update number of active bands */
if (psyStatic[ch]->isLFE) {
psyData[ch]->sfbActive = hThisPsyConf[ch]->sfbActiveLFE;
psyData[ch]->lowpassLine = hThisPsyConf[ch]->lowpassLineLFE;
} else {
psyData[ch]->sfbActive = hThisPsyConf[ch]->sfbActive;
psyData[ch]->lowpassLine = hThisPsyConf[ch]->lowpassLine;
}
if (hThisPsyConf[ch]->filterbank == FB_ELD) {
if (FDKaacEnc_Transform_Real_Eld(
psyStatic[ch]->psyInputBuffer, psyData[ch]->mdctSpectrum,
psyStatic[ch]->blockSwitchingControl.lastWindowSequence,
psyStatic[ch]->blockSwitchingControl.windowShape,
&psyStatic[ch]->blockSwitchingControl.lastWindowShape,
nTimeSamples, &mdctSpectrum_e, hThisPsyConf[ch]->filterbank,
psyStatic[ch]->overlapAddBuffer) != 0) {
return AAC_ENC_UNSUPPORTED_FILTERBANK;
}
} else {
if (FDKaacEnc_Transform_Real(
psyStatic[ch]->psyInputBuffer, psyData[ch]->mdctSpectrum,
psyStatic[ch]->blockSwitchingControl.lastWindowSequence,
psyStatic[ch]->blockSwitchingControl.windowShape,
&psyStatic[ch]->blockSwitchingControl.lastWindowShape,
&psyStatic[ch]->mdctPers, nTimeSamples, &mdctSpectrum_e,
hThisPsyConf[ch]->filterbank) != 0) {
return AAC_ENC_UNSUPPORTED_FILTERBANK;
}
}
for (w = 0; w < nWindows[ch]; w++) {
wOffset = w * windowLength[ch];
/* Low pass / highest sfb */
FDKmemclear(
&psyData[ch]->mdctSpectrum[psyData[ch]->lowpassLine + wOffset],
(windowLength[ch] - psyData[ch]->lowpassLine) * sizeof(FIXP_DBL));
if ((hPsyConfLong->filterbank != FB_LC) &&
(psyData[ch]->lowpassLine >= FADE_OUT_LEN)) {
/* Do blending to reduce gibbs artifacts */
for (int i = 0; i < FADE_OUT_LEN; i++) {
psyData[ch]->mdctSpectrum[psyData[ch]->lowpassLine + wOffset -
FADE_OUT_LEN + i] =
fMult(psyData[ch]->mdctSpectrum[psyData[ch]->lowpassLine +
wOffset - FADE_OUT_LEN + i],
fadeOutFactor[i]);
}
}
/* Check for zero spectrum. These loops will usually terminate very, very
* early. */
for (line = 0; (line < psyData[ch]->lowpassLine) && (zeroSpec == TRUE);
line++) {
if (psyData[ch]->mdctSpectrum[line + wOffset] != (FIXP_DBL)0) {
zeroSpec = FALSE;
break;
}
}
} /* w loop */
psyData[ch]->mdctScale = mdctSpectrum_e;
/* rotate internal time samples */
FDKmemmove(psyStatic[ch]->psyInputBuffer,
psyStatic[ch]->psyInputBuffer + nTimeSamples,
nTimeSamples * sizeof(INT_PCM));
/* ... and get remaining samples from input buffer */
FDKmemcpy(psyStatic[ch]->psyInputBuffer + nTimeSamples,
pInput + (2 * nTimeSamples - blockSwitchingOffset) +
chIdx[ch] * inputBufSize,
(blockSwitchingOffset - nTimeSamples) * sizeof(INT_PCM));
} /* ch */
/* Do some rescaling to get maximum possible accuracy for energies */
if (zeroSpec == FALSE) {
/* Calc possible spectrum leftshift for each sfb (1 means: 1 bit left shift
* is possible without overflow) */
INT minSpecShift = MAX_SHIFT_DBL;
INT nrgShift = MAX_SHIFT_DBL;
INT finalShift = MAX_SHIFT_DBL;
FIXP_DBL currNrg = 0;
FIXP_DBL maxNrg = 0;
for (ch = 0; ch < channels; ch++) {
for (w = 0; w < nWindows[ch]; w++) {
wOffset = w * windowLength[ch];
FDKaacEnc_CalcSfbMaxScaleSpec(
psyData[ch]->mdctSpectrum + wOffset, hThisPsyConf[ch]->sfbOffset,
pSfbMaxScaleSpec[ch] + w * maxSfb[ch], psyData[ch]->sfbActive);
for (sfb = 0; sfb < psyData[ch]->sfbActive; sfb++)
minSpecShift = fixMin(minSpecShift,
(pSfbMaxScaleSpec[ch] + w * maxSfb[ch])[sfb]);
}
}
/* Calc possible energy leftshift for each sfb (1 means: 1 bit left shift is
* possible without overflow) */
for (ch = 0; ch < channels; ch++) {
for (w = 0; w < nWindows[ch]; w++) {
wOffset = w * windowLength[ch];
currNrg = FDKaacEnc_CheckBandEnergyOptim(
psyData[ch]->mdctSpectrum + wOffset,
pSfbMaxScaleSpec[ch] + w * maxSfb[ch], hThisPsyConf[ch]->sfbOffset,
psyData[ch]->sfbActive, pSfbEnergy[ch] + w * maxSfb[ch],
pSfbEnergyLdData[ch] + w * maxSfb[ch], minSpecShift - 4);
maxNrg = fixMax(maxNrg, currNrg);
}
}
if (maxNrg != (FIXP_DBL)0) {
nrgShift = (CountLeadingBits(maxNrg) >> 1) + (minSpecShift - 4);
}
/* 2check: Hasn't this decision to be made for both channels? */
/* For short windows 1 additional bit headroom is necessary to prevent
* overflows when summing up energies in FDKaacEnc_groupShortData() */
if (isShortWindow[0]) nrgShift--;
/* both spectrum and energies mustn't overflow */
finalShift = fixMin(minSpecShift, nrgShift);
/* do not shift more than 3 bits more to the left than signal without
* blockfloating point would be to avoid overflow of scaled PCM quantization
* thresholds */
if (finalShift > psyData[0]->mdctScale + 3)
finalShift = psyData[0]->mdctScale + 3;
FDK_ASSERT(finalShift >= 0); /* right shift is not allowed */
/* correct sfbEnergy and sfbEnergyLdData with new finalShift */
FIXP_DBL ldShift = finalShift * FL2FXCONST_DBL(2.0 / 64);
for (ch = 0; ch < channels; ch++) {
INT maxSfb_ch = maxSfb[ch];
INT w_maxSfb_ch = 0;
for (w = 0; w < nWindows[ch]; w++) {
for (sfb = 0; sfb < psyData[ch]->sfbActive; sfb++) {
INT scale = fixMax(0, (pSfbMaxScaleSpec[ch] + w_maxSfb_ch)[sfb] - 4);
scale = fixMin((scale - finalShift) << 1, DFRACT_BITS - 1);
if (scale >= 0)
(pSfbEnergy[ch] + w_maxSfb_ch)[sfb] >>= (scale);
else
(pSfbEnergy[ch] + w_maxSfb_ch)[sfb] <<= (-scale);
(pSfbThreshold[ch] + w_maxSfb_ch)[sfb] =
fMult((pSfbEnergy[ch] + w_maxSfb_ch)[sfb], C_RATIO);
(pSfbEnergyLdData[ch] + w_maxSfb_ch)[sfb] += ldShift;
}
w_maxSfb_ch += maxSfb_ch;
}
}
if (finalShift != 0) {
for (ch = 0; ch < channels; ch++) {
INT wLen = windowLength[ch];
INT lowpassLine = psyData[ch]->lowpassLine;
wOffset = 0;
FIXP_DBL *mdctSpectrum = &psyData[ch]->mdctSpectrum[0];
for (w = 0; w < nWindows[ch]; w++) {
FIXP_DBL *spectrum = &mdctSpectrum[wOffset];
for (line = 0; line < lowpassLine; line++) {
spectrum[line] <<= finalShift;
}
wOffset += wLen;
/* update sfbMaxScaleSpec */
for (sfb = 0; sfb < psyData[ch]->sfbActive; sfb++)
(pSfbMaxScaleSpec[ch] + w * maxSfb[ch])[sfb] -= finalShift;
}
/* update mdctScale */
psyData[ch]->mdctScale -= finalShift;
}
}
} else {
/* all spectral lines are zero */
for (ch = 0; ch < channels; ch++) {
psyData[ch]->mdctScale =
0; /* otherwise mdctScale would be for example 7 and PCM quantization
* thresholds would be shifted 14 bits to the right causing some of
* them to become 0 (which causes problems later) */
/* clear sfbMaxScaleSpec */
for (w = 0; w < nWindows[ch]; w++) {
for (sfb = 0; sfb < psyData[ch]->sfbActive; sfb++) {
(pSfbMaxScaleSpec[ch] + w * maxSfb[ch])[sfb] = 0;
(pSfbEnergy[ch] + w * maxSfb[ch])[sfb] = (FIXP_DBL)0;
(pSfbEnergyLdData[ch] + w * maxSfb[ch])[sfb] = FL2FXCONST_DBL(-1.0f);
(pSfbThreshold[ch] + w * maxSfb[ch])[sfb] = (FIXP_DBL)0;
}
}
}
}
/* Advance psychoacoustics: Tonality and TNS */
if ((channels >= 1) && (psyStatic[0]->isLFE)) {
tnsData[0]->dataRaw.Long.subBlockInfo.tnsActive[HIFILT] = 0;
tnsData[0]->dataRaw.Long.subBlockInfo.tnsActive[LOFILT] = 0;
} else {
for (ch = 0; ch < channels; ch++) {
if (!isShortWindow[ch]) {
/* tonality */
FDKaacEnc_CalculateFullTonality(
psyData[ch]->mdctSpectrum, pSfbMaxScaleSpec[ch],
pSfbEnergyLdData[ch], sfbTonality[ch], psyData[ch]->sfbActive,
hThisPsyConf[ch]->sfbOffset, hThisPsyConf[ch]->pnsConf.usePns);
}
} /* ch */
if (hPsyConfLong->tnsConf.tnsActive || hPsyConfShort->tnsConf.tnsActive) {
INT tnsActive[TRANS_FAC] = {0};
INT nrgScaling[2] = {0, 0};
INT tnsSpecShift = 0;
for (ch = 0; ch < channels; ch++) {
for (w = 0; w < nWindows[ch]; w++) {
wOffset = w * windowLength[ch];
/* TNS */
FDKaacEnc_TnsDetect(
tnsData[ch], &hThisPsyConf[ch]->tnsConf,
&psyOutChannel[ch]->tnsInfo, hThisPsyConf[ch]->sfbCnt,
psyData[ch]->mdctSpectrum + wOffset, w,
psyStatic[ch]->blockSwitchingControl.lastWindowSequence);
}
}
if (channels == 2) {
FDKaacEnc_TnsSync(
tnsData[1], tnsData[0], &psyOutChannel[1]->tnsInfo,
&psyOutChannel[0]->tnsInfo,
psyStatic[1]->blockSwitchingControl.lastWindowSequence,
psyStatic[0]->blockSwitchingControl.lastWindowSequence,
&hThisPsyConf[1]->tnsConf);
}
if (channels >= 1) {
FDK_ASSERT(1 == commonWindow); /* all checks for TNS do only work for
common windows (which is always set)*/
for (w = 0; w < nWindows[0]; w++) {
if (isShortWindow[0])
tnsActive[w] =
tnsData[0]->dataRaw.Short.subBlockInfo[w].tnsActive[HIFILT] ||
tnsData[0]->dataRaw.Short.subBlockInfo[w].tnsActive[LOFILT] ||
tnsData[channels - 1]
->dataRaw.Short.subBlockInfo[w]
.tnsActive[HIFILT] ||
tnsData[channels - 1]
->dataRaw.Short.subBlockInfo[w]
.tnsActive[LOFILT];
else
tnsActive[w] =
tnsData[0]->dataRaw.Long.subBlockInfo.tnsActive[HIFILT] ||
tnsData[0]->dataRaw.Long.subBlockInfo.tnsActive[LOFILT] ||
tnsData[channels - 1]
->dataRaw.Long.subBlockInfo.tnsActive[HIFILT] ||
tnsData[channels - 1]
->dataRaw.Long.subBlockInfo.tnsActive[LOFILT];
}
}
for (ch = 0; ch < channels; ch++) {
if (tnsActive[0] && !isShortWindow[ch]) {
/* Scale down spectrum if tns is active in one of the two channels
* with same lastWindowSequence */
/* first part of threshold calculation; it's not necessary to update
* sfbMaxScaleSpec */
INT shift = 1;
for (sfb = 0; sfb < hThisPsyConf[ch]->lowpassLine; sfb++) {
psyData[ch]->mdctSpectrum[sfb] =
psyData[ch]->mdctSpectrum[sfb] >> shift;
}
/* update thresholds */
for (sfb = 0; sfb < psyData[ch]->sfbActive; sfb++) {
pSfbThreshold[ch][sfb] >>= (2 * shift);
}
psyData[ch]->mdctScale += shift; /* update mdctScale */
/* calc sfbEnergies after tnsEncode again ! */
}
}
for (ch = 0; ch < channels; ch++) {
for (w = 0; w < nWindows[ch]; w++) {
wOffset = w * windowLength[ch];
FDKaacEnc_TnsEncode(
&psyOutChannel[ch]->tnsInfo, tnsData[ch],
hThisPsyConf[ch]->sfbCnt, &hThisPsyConf[ch]->tnsConf,
hThisPsyConf[ch]->sfbOffset[psyData[ch]->sfbActive],
/*hThisPsyConf[ch]->lowpassLine*/ /* filter stops
before that
line ! */
psyData[ch]->mdctSpectrum +
wOffset,
w, psyStatic[ch]->blockSwitchingControl.lastWindowSequence);
if (tnsActive[w]) {
/* Calc sfb-bandwise mdct-energies for left and right channel again,
*/
/* if tns active in current channel or in one channel with same
* lastWindowSequence left and right */
FDKaacEnc_CalcSfbMaxScaleSpec(psyData[ch]->mdctSpectrum + wOffset,
hThisPsyConf[ch]->sfbOffset,
pSfbMaxScaleSpec[ch] + w * maxSfb[ch],
psyData[ch]->sfbActive);
}
}
}
for (ch = 0; ch < channels; ch++) {
for (w = 0; w < nWindows[ch]; w++) {
if (tnsActive[w]) {
if (isShortWindow[ch]) {
FDKaacEnc_CalcBandEnergyOptimShort(
psyData[ch]->mdctSpectrum + w * windowLength[ch],
pSfbMaxScaleSpec[ch] + w * maxSfb[ch],
hThisPsyConf[ch]->sfbOffset, psyData[ch]->sfbActive,
pSfbEnergy[ch] + w * maxSfb[ch]);
} else {
nrgScaling[ch] = /* with tns, energy calculation can overflow; ->
scaling */
FDKaacEnc_CalcBandEnergyOptimLong(
psyData[ch]->mdctSpectrum, pSfbMaxScaleSpec[ch],
hThisPsyConf[ch]->sfbOffset, psyData[ch]->sfbActive,
pSfbEnergy[ch], pSfbEnergyLdData[ch]);
tnsSpecShift =
fixMax(tnsSpecShift, nrgScaling[ch]); /* nrgScaling is set
only if nrg would
have an overflow */
}
} /* if tnsActive */
}
} /* end channel loop */
/* adapt scaling to prevent nrg overflow, only for long blocks */
for (ch = 0; ch < channels; ch++) {
if ((tnsSpecShift != 0) && !isShortWindow[ch]) {
/* scale down spectrum, nrg's and thresholds, if there was an overflow
* in sfbNrg calculation after tns */
for (line = 0; line < hThisPsyConf[ch]->lowpassLine; line++) {
psyData[ch]->mdctSpectrum[line] >>= tnsSpecShift;
}
INT scale = (tnsSpecShift - nrgScaling[ch]) << 1;
for (sfb = 0; sfb < psyData[ch]->sfbActive; sfb++) {
pSfbEnergyLdData[ch][sfb] -=
scale * FL2FXCONST_DBL(1.0 / LD_DATA_SCALING);
pSfbEnergy[ch][sfb] >>= scale;
pSfbThreshold[ch][sfb] >>= (tnsSpecShift << 1);
}
psyData[ch]->mdctScale += tnsSpecShift; /* update mdctScale; not
necessary to update
sfbMaxScaleSpec */
}
} /* end channel loop */
} /* TNS active */
else {
/* In case of disable TNS, reset its dynamic data. Some of its elements is
* required in PNS detection below. */
FDKmemclear(psyDynamic->tnsData, sizeof(psyDynamic->tnsData));
}
} /* !isLFE */
/* Advance thresholds */
for (ch = 0; ch < channels; ch++) {
INT headroom;
FIXP_DBL clipEnergy;
INT energyShift = psyData[ch]->mdctScale * 2;
INT clipNrgShift = energyShift - THR_SHIFTBITS;
if (isShortWindow[ch])
headroom = 6;
else
headroom = 0;
if (clipNrgShift >= 0)
clipEnergy = hThisPsyConf[ch]->clipEnergy >> clipNrgShift;
else if (clipNrgShift >= -headroom)
clipEnergy = hThisPsyConf[ch]->clipEnergy << -clipNrgShift;
else
clipEnergy = (FIXP_DBL)MAXVAL_DBL;
for (w = 0; w < nWindows[ch]; w++) {
INT i;
/* limit threshold to avoid clipping */
for (i = 0; i < psyData[ch]->sfbActive; i++) {
*(pSfbThreshold[ch] + w * maxSfb[ch] + i) =
fixMin(*(pSfbThreshold[ch] + w * maxSfb[ch] + i), clipEnergy);
}
/* spreading */
FDKaacEnc_SpreadingMax(psyData[ch]->sfbActive,
hThisPsyConf[ch]->sfbMaskLowFactor,
hThisPsyConf[ch]->sfbMaskHighFactor,
pSfbThreshold[ch] + w * maxSfb[ch]);
/* PCM quantization threshold */
energyShift += PCM_QUANT_THR_SCALE;
if (energyShift >= 0) {
energyShift = fixMin(DFRACT_BITS - 1, energyShift);
for (i = 0; i < psyData[ch]->sfbActive; i++) {
*(pSfbThreshold[ch] + w * maxSfb[ch] + i) = fixMax(
*(pSfbThreshold[ch] + w * maxSfb[ch] + i) >> THR_SHIFTBITS,
(hThisPsyConf[ch]->sfbPcmQuantThreshold[i] >> energyShift));
}
} else {
energyShift = fixMin(DFRACT_BITS - 1, -energyShift);
for (i = 0; i < psyData[ch]->sfbActive; i++) {
*(pSfbThreshold[ch] + w * maxSfb[ch] + i) = fixMax(
*(pSfbThreshold[ch] + w * maxSfb[ch] + i) >> THR_SHIFTBITS,
(hThisPsyConf[ch]->sfbPcmQuantThreshold[i] << energyShift));
}
}
if (!psyStatic[ch]->isLFE) {
/* preecho control */
if (psyStatic[ch]->blockSwitchingControl.lastWindowSequence ==
STOP_WINDOW) {
/* prevent FDKaacEnc_PreEchoControl from comparing stop
thresholds with short thresholds */
for (i = 0; i < psyData[ch]->sfbActive; i++) {
psyStatic[ch]->sfbThresholdnm1[i] = (FIXP_DBL)MAXVAL_DBL;
}
psyStatic[ch]->mdctScalenm1 = 0;
psyStatic[ch]->calcPreEcho = 0;
}
FDKaacEnc_PreEchoControl(
psyStatic[ch]->sfbThresholdnm1, psyStatic[ch]->calcPreEcho,
psyData[ch]->sfbActive, hThisPsyConf[ch]->maxAllowedIncreaseFactor,
hThisPsyConf[ch]->minRemainingThresholdFactor,
pSfbThreshold[ch] + w * maxSfb[ch], psyData[ch]->mdctScale,
&psyStatic[ch]->mdctScalenm1);
psyStatic[ch]->calcPreEcho = 1;
if (psyStatic[ch]->blockSwitchingControl.lastWindowSequence ==
START_WINDOW) {
/* prevent FDKaacEnc_PreEchoControl in next frame to compare start
thresholds with short thresholds */
for (i = 0; i < psyData[ch]->sfbActive; i++) {
psyStatic[ch]->sfbThresholdnm1[i] = (FIXP_DBL)MAXVAL_DBL;
}
psyStatic[ch]->mdctScalenm1 = 0;
psyStatic[ch]->calcPreEcho = 0;
}
}
/* spread energy to avoid hole detection */
FDKmemcpy(pSfbSpreadEnergy[ch] + w * maxSfb[ch],
pSfbEnergy[ch] + w * maxSfb[ch],
psyData[ch]->sfbActive * sizeof(FIXP_DBL));
FDKaacEnc_SpreadingMax(psyData[ch]->sfbActive,
hThisPsyConf[ch]->sfbMaskLowFactorSprEn,
hThisPsyConf[ch]->sfbMaskHighFactorSprEn,
pSfbSpreadEnergy[ch] + w * maxSfb[ch]);
}
}
/* Calc bandwise energies for mid and side channel. Do it only if 2 channels
* exist */
if (channels == 2) {
for (w = 0; w < nWindows[1]; w++) {
wOffset = w * windowLength[1];
FDKaacEnc_CalcBandNrgMSOpt(
psyData[0]->mdctSpectrum + wOffset,
psyData[1]->mdctSpectrum + wOffset,
pSfbMaxScaleSpec[0] + w * maxSfb[0],
pSfbMaxScaleSpec[1] + w * maxSfb[1], hThisPsyConf[1]->sfbOffset,
psyData[0]->sfbActive, pSfbEnergyMS[0] + w * maxSfb[0],
pSfbEnergyMS[1] + w * maxSfb[1],
(psyStatic[1]->blockSwitchingControl.lastWindowSequence !=
SHORT_WINDOW),
psyData[0]->sfbEnergyMSLdData, psyData[1]->sfbEnergyMSLdData);
}
}
/* group short data (maxSfb[ch] for short blocks is determined here) */
for (ch = 0; ch < channels; ch++) {
if (isShortWindow[ch]) {
int sfbGrp;
int noSfb = psyStatic[ch]->blockSwitchingControl.noOfGroups *
hPsyConfShort->sfbCnt;
/* At this point, energies and thresholds are copied/regrouped from the
* ".Short" to the ".Long" arrays */
FDKaacEnc_groupShortData(
psyData[ch]->mdctSpectrum, &psyData[ch]->sfbThreshold,
&psyData[ch]->sfbEnergy, &psyData[ch]->sfbEnergyMS,
&psyData[ch]->sfbSpreadEnergy, hPsyConfShort->sfbCnt,
psyData[ch]->sfbActive, hPsyConfShort->sfbOffset,
hPsyConfShort->sfbMinSnrLdData, psyData[ch]->groupedSfbOffset,
&maxSfbPerGroup[ch], psyOutChannel[ch]->sfbMinSnrLdData,
psyStatic[ch]->blockSwitchingControl.noOfGroups,
psyStatic[ch]->blockSwitchingControl.groupLen,
psyConf[1].granuleLength);
/* calculate ldData arrays (short values are in .Long-arrays after
* FDKaacEnc_groupShortData) */
for (sfbGrp = 0; sfbGrp < noSfb; sfbGrp += hPsyConfShort->sfbCnt) {
LdDataVector(&psyData[ch]->sfbEnergy.Long[sfbGrp],
&psyOutChannel[ch]->sfbEnergyLdData[sfbGrp],
psyData[ch]->sfbActive);
}
/* calc sfbThrld and set Values smaller 2^-31 to 2^-33*/
for (sfbGrp = 0; sfbGrp < noSfb; sfbGrp += hPsyConfShort->sfbCnt) {
LdDataVector(&psyData[ch]->sfbThreshold.Long[sfbGrp],
&psyOutChannel[ch]->sfbThresholdLdData[sfbGrp],
psyData[ch]->sfbActive);
for (sfb = 0; sfb < psyData[ch]->sfbActive; sfb++) {
psyOutChannel[ch]->sfbThresholdLdData[sfbGrp + sfb] =
fixMax(psyOutChannel[ch]->sfbThresholdLdData[sfbGrp + sfb],
FL2FXCONST_DBL(-0.515625f));
}
}
if (channels == 2) {
for (sfbGrp = 0; sfbGrp < noSfb; sfbGrp += hPsyConfShort->sfbCnt) {
LdDataVector(&psyData[ch]->sfbEnergyMS.Long[sfbGrp],
&psyData[ch]->sfbEnergyMSLdData[sfbGrp],
psyData[ch]->sfbActive);
}
}
FDKmemcpy(psyOutChannel[ch]->sfbOffsets, psyData[ch]->groupedSfbOffset,
(MAX_GROUPED_SFB + 1) * sizeof(INT));
} else {
int i;
/* maxSfb[ch] for long blocks */
for (sfb = psyData[ch]->sfbActive - 1; sfb >= 0; sfb--) {
for (line = hPsyConfLong->sfbOffset[sfb + 1] - 1;
line >= hPsyConfLong->sfbOffset[sfb]; line--) {
if (psyData[ch]->mdctSpectrum[line] != FL2FXCONST_SGL(0.0f)) break;
}
if (line > hPsyConfLong->sfbOffset[sfb]) break;
}
maxSfbPerGroup[ch] = sfb + 1;
maxSfbPerGroup[ch] =
fixMax(fixMin(5, psyData[ch]->sfbActive), maxSfbPerGroup[ch]);
/* sfbNrgLdData is calculated in FDKaacEnc_advancePsychLong, copy in
* psyOut structure */
FDKmemcpy(psyOutChannel[ch]->sfbEnergyLdData,
psyData[ch]->sfbEnergyLdData.Long,
psyData[ch]->sfbActive * sizeof(FIXP_DBL));
FDKmemcpy(psyOutChannel[ch]->sfbOffsets, hPsyConfLong->sfbOffset,
(MAX_GROUPED_SFB + 1) * sizeof(INT));
/* sfbMinSnrLdData modified in adjust threshold, copy necessary */
FDKmemcpy(psyOutChannel[ch]->sfbMinSnrLdData,
hPsyConfLong->sfbMinSnrLdData,
psyData[ch]->sfbActive * sizeof(FIXP_DBL));
/* sfbEnergyMSLdData ist already calculated in FDKaacEnc_CalcBandNrgMSOpt;
* only in long case */
/* calc sfbThrld and set Values smaller 2^-31 to 2^-33*/
LdDataVector(psyData[ch]->sfbThreshold.Long,
psyOutChannel[ch]->sfbThresholdLdData,
psyData[ch]->sfbActive);
for (i = 0; i < psyData[ch]->sfbActive; i++) {
psyOutChannel[ch]->sfbThresholdLdData[i] =
fixMax(psyOutChannel[ch]->sfbThresholdLdData[i],
FL2FXCONST_DBL(-0.515625f));
}
}
}
/*
Intensity parameter intialization.
*/
for (ch = 0; ch < channels; ch++) {
FDKmemclear(psyOutChannel[ch]->isBook, MAX_GROUPED_SFB * sizeof(INT));
FDKmemclear(psyOutChannel[ch]->isScale, MAX_GROUPED_SFB * sizeof(INT));
}
for (ch = 0; ch < channels; ch++) {
INT win = (isShortWindow[ch] ? 1 : 0);
if (!psyStatic[ch]->isLFE) {
/* PNS Decision */
FDKaacEnc_PnsDetect(
&(psyConf[0].pnsConf), pnsData[ch],
psyStatic[ch]->blockSwitchingControl.lastWindowSequence,
psyData[ch]->sfbActive,
maxSfbPerGroup[ch], /* count of Sfb which are not zero. */
psyOutChannel[ch]->sfbThresholdLdData, psyConf[win].sfbOffset,
psyData[ch]->mdctSpectrum, psyData[ch]->sfbMaxScaleSpec.Long,
sfbTonality[ch], psyOutChannel[ch]->tnsInfo.order[0][0],
tnsData[ch]->dataRaw.Long.subBlockInfo.predictionGain[HIFILT],
tnsData[ch]->dataRaw.Long.subBlockInfo.tnsActive[HIFILT],
psyOutChannel[ch]->sfbEnergyLdData, psyOutChannel[ch]->noiseNrg);
} /* !isLFE */
} /* ch */
/*
stereo Processing
*/
if (channels == 2) {
psyOutElement->toolsInfo.msDigest = MS_NONE;
psyOutElement->commonWindow = commonWindow;
if (psyOutElement->commonWindow)
maxSfbPerGroup[0] = maxSfbPerGroup[1] =
fixMax(maxSfbPerGroup[0], maxSfbPerGroup[1]);
if (psyStatic[0]->blockSwitchingControl.lastWindowSequence !=
SHORT_WINDOW) {
/* PNS preprocessing depending on ms processing: PNS not in Short Window!
*/
FDKaacEnc_PreProcessPnsChannelPair(
psyData[0]->sfbActive, (&psyData[0]->sfbEnergy)->Long,
(&psyData[1]->sfbEnergy)->Long, psyOutChannel[0]->sfbEnergyLdData,
psyOutChannel[1]->sfbEnergyLdData, psyData[0]->sfbEnergyMS.Long,
&(psyConf[0].pnsConf), pnsData[0], pnsData[1]);
FDKaacEnc_IntensityStereoProcessing(
psyData[0]->sfbEnergy.Long, psyData[1]->sfbEnergy.Long,
psyData[0]->mdctSpectrum, psyData[1]->mdctSpectrum,
psyData[0]->sfbThreshold.Long, psyData[1]->sfbThreshold.Long,
psyOutChannel[1]->sfbThresholdLdData,
psyData[0]->sfbSpreadEnergy.Long, psyData[1]->sfbSpreadEnergy.Long,
psyOutChannel[0]->sfbEnergyLdData, psyOutChannel[1]->sfbEnergyLdData,
&psyOutElement->toolsInfo.msDigest, psyOutElement->toolsInfo.msMask,
psyConf[0].sfbCnt, psyConf[0].sfbCnt, maxSfbPerGroup[0],
psyConf[0].sfbOffset,
psyConf[0].allowIS && psyOutElement->commonWindow,
psyOutChannel[1]->isBook, psyOutChannel[1]->isScale, pnsData);
FDKaacEnc_MsStereoProcessing(
psyData, psyOutChannel, psyOutChannel[1]->isBook,
&psyOutElement->toolsInfo.msDigest, psyOutElement->toolsInfo.msMask,
psyConf[0].allowMS, psyData[0]->sfbActive, psyData[0]->sfbActive,
maxSfbPerGroup[0], psyOutChannel[0]->sfbOffsets);
/* PNS postprocessing */
FDKaacEnc_PostProcessPnsChannelPair(
psyData[0]->sfbActive, &(psyConf[0].pnsConf), pnsData[0], pnsData[1],
psyOutElement->toolsInfo.msMask, &psyOutElement->toolsInfo.msDigest);
} else {
FDKaacEnc_IntensityStereoProcessing(
psyData[0]->sfbEnergy.Long, psyData[1]->sfbEnergy.Long,
psyData[0]->mdctSpectrum, psyData[1]->mdctSpectrum,
psyData[0]->sfbThreshold.Long, psyData[1]->sfbThreshold.Long,
psyOutChannel[1]->sfbThresholdLdData,
psyData[0]->sfbSpreadEnergy.Long, psyData[1]->sfbSpreadEnergy.Long,
psyOutChannel[0]->sfbEnergyLdData, psyOutChannel[1]->sfbEnergyLdData,
&psyOutElement->toolsInfo.msDigest, psyOutElement->toolsInfo.msMask,
psyStatic[0]->blockSwitchingControl.noOfGroups *
hPsyConfShort->sfbCnt,
psyConf[1].sfbCnt, maxSfbPerGroup[0], psyData[0]->groupedSfbOffset,
psyConf[0].allowIS && psyOutElement->commonWindow,
psyOutChannel[1]->isBook, psyOutChannel[1]->isScale, pnsData);
/* it's OK to pass the ".Long" arrays here. They contain grouped short
* data since FDKaacEnc_groupShortData() */
FDKaacEnc_MsStereoProcessing(
psyData, psyOutChannel, psyOutChannel[1]->isBook,
&psyOutElement->toolsInfo.msDigest, psyOutElement->toolsInfo.msMask,
psyConf[1].allowMS,
psyStatic[0]->blockSwitchingControl.noOfGroups *
hPsyConfShort->sfbCnt,
hPsyConfShort->sfbCnt, maxSfbPerGroup[0],
psyOutChannel[0]->sfbOffsets);
}
} /* (channels == 2) */
/*
PNS Coding
*/
for (ch = 0; ch < channels; ch++) {
if (psyStatic[ch]->isLFE) {
/* no PNS coding */
for (sfb = 0; sfb < psyData[ch]->sfbActive; sfb++) {
psyOutChannel[ch]->noiseNrg[sfb] = NO_NOISE_PNS;
}
} else {
FDKaacEnc_CodePnsChannel(
psyData[ch]->sfbActive, &(hThisPsyConf[ch]->pnsConf),
pnsData[ch]->pnsFlag, psyData[ch]->sfbEnergyLdData.Long,
psyOutChannel[ch]->noiseNrg, /* this is the energy that will be
written to the bitstream */
psyOutChannel[ch]->sfbThresholdLdData);
}
}
/*
build output
*/
for (ch = 0; ch < channels; ch++) {
INT mask;
int grp;
psyOutChannel[ch]->maxSfbPerGroup = maxSfbPerGroup[ch];
psyOutChannel[ch]->mdctScale = psyData[ch]->mdctScale;
if (isShortWindow[ch] == 0) {
psyOutChannel[ch]->sfbCnt = hPsyConfLong->sfbActive;
psyOutChannel[ch]->sfbPerGroup = hPsyConfLong->sfbActive;
psyOutChannel[ch]->lastWindowSequence =
psyStatic[ch]->blockSwitchingControl.lastWindowSequence;
psyOutChannel[ch]->windowShape =
psyStatic[ch]->blockSwitchingControl.windowShape;
} else {
INT sfbCnt = psyStatic[ch]->blockSwitchingControl.noOfGroups *
hPsyConfShort->sfbCnt;
psyOutChannel[ch]->sfbCnt = sfbCnt;
psyOutChannel[ch]->sfbPerGroup = hPsyConfShort->sfbCnt;
psyOutChannel[ch]->lastWindowSequence = SHORT_WINDOW;
psyOutChannel[ch]->windowShape = SINE_WINDOW;
}
/* generate grouping mask */
mask = 0;
for (grp = 0; grp < psyStatic[ch]->blockSwitchingControl.noOfGroups;
grp++) {
int j;
mask <<= 1;
for (j = 1; j < psyStatic[ch]->blockSwitchingControl.groupLen[grp]; j++) {
mask = (mask << 1) | 1;
}
}
psyOutChannel[ch]->groupingMask = mask;
/* build interface */
FDKmemcpy(psyOutChannel[ch]->groupLen,
psyStatic[ch]->blockSwitchingControl.groupLen,
MAX_NO_OF_GROUPS * sizeof(INT));
FDKmemcpy(psyOutChannel[ch]->sfbEnergy, (&psyData[ch]->sfbEnergy)->Long,
MAX_GROUPED_SFB * sizeof(FIXP_DBL));
FDKmemcpy(psyOutChannel[ch]->sfbSpreadEnergy,
(&psyData[ch]->sfbSpreadEnergy)->Long,
MAX_GROUPED_SFB * sizeof(FIXP_DBL));
// FDKmemcpy(psyOutChannel[ch]->mdctSpectrum,
// psyData[ch]->mdctSpectrum, (1024)*sizeof(FIXP_DBL));
}
return AAC_ENC_OK;
}
void FDKaacEnc_PsyClose(PSY_INTERNAL **phPsyInternal, PSY_OUT **phPsyOut) {
int n, i;
if (phPsyInternal != NULL) {
PSY_INTERNAL *hPsyInternal = *phPsyInternal;
if (hPsyInternal) {
for (i = 0; i < (8); i++) {
if (hPsyInternal->pStaticChannels[i]) {
if (hPsyInternal->pStaticChannels[i]->psyInputBuffer)
FreeRam_aacEnc_PsyInputBuffer(
&hPsyInternal->pStaticChannels[i]
->psyInputBuffer); /* AUDIO INPUT BUFFER */
FreeRam_aacEnc_PsyStatic(
&hPsyInternal->pStaticChannels[i]); /* PSY_STATIC */
}
}
for (i = 0; i < ((8)); i++) {
if (hPsyInternal->psyElement[i])
FreeRam_aacEnc_PsyElement(
&hPsyInternal->psyElement[i]); /* PSY_ELEMENT */
}
FreeRam_aacEnc_PsyInternal(phPsyInternal);
}
}
if (phPsyOut != NULL) {
for (n = 0; n < (1); n++) {
if (phPsyOut[n]) {
for (i = 0; i < (8); i++) {
if (phPsyOut[n]->pPsyOutChannels[i])
FreeRam_aacEnc_PsyOutChannel(
&phPsyOut[n]->pPsyOutChannels[i]); /* PSY_OUT_CHANNEL */
}
for (i = 0; i < ((8)); i++) {
if (phPsyOut[n]->psyOutElement[i])
FreeRam_aacEnc_PsyOutElements(
&phPsyOut[n]->psyOutElement[i]); /* PSY_OUT_ELEMENTS */
}
FreeRam_aacEnc_PsyOut(&phPsyOut[n]);
}
}
}
}
|