summaryrefslogtreecommitdiffstats
path: root/fdk-aac/libAACdec/src/block.cpp
blob: b3d09a6ffaeea309f55f468762ae63a2f7a68589 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
/* -----------------------------------------------------------------------------
Software License for The Fraunhofer FDK AAC Codec Library for Android

© Copyright  1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
Forschung e.V. All rights reserved.

 1.    INTRODUCTION
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
scheme for digital audio. This FDK AAC Codec software is intended to be used on
a wide variety of Android devices.

AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
general perceptual audio codecs. AAC-ELD is considered the best-performing
full-bandwidth communications codec by independent studies and is widely
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
specifications.

Patent licenses for necessary patent claims for the FDK AAC Codec (including
those of Fraunhofer) may be obtained through Via Licensing
(www.vialicensing.com) or through the respective patent owners individually for
the purpose of encoding or decoding bit streams in products that are compliant
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
Android devices already license these patent claims through Via Licensing or
directly from the patent owners, and therefore FDK AAC Codec software may
already be covered under those patent licenses when it is used for those
licensed purposes only.

Commercially-licensed AAC software libraries, including floating-point versions
with enhanced sound quality, are also available from Fraunhofer. Users are
encouraged to check the Fraunhofer website for additional applications
information and documentation.

2.    COPYRIGHT LICENSE

Redistribution and use in source and binary forms, with or without modification,
are permitted without payment of copyright license fees provided that you
satisfy the following conditions:

You must retain the complete text of this software license in redistributions of
the FDK AAC Codec or your modifications thereto in source code form.

You must retain the complete text of this software license in the documentation
and/or other materials provided with redistributions of the FDK AAC Codec or
your modifications thereto in binary form. You must make available free of
charge copies of the complete source code of the FDK AAC Codec and your
modifications thereto to recipients of copies in binary form.

The name of Fraunhofer may not be used to endorse or promote products derived
from this library without prior written permission.

You may not charge copyright license fees for anyone to use, copy or distribute
the FDK AAC Codec software or your modifications thereto.

Your modified versions of the FDK AAC Codec must carry prominent notices stating
that you changed the software and the date of any change. For modified versions
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
AAC Codec Library for Android."

3.    NO PATENT LICENSE

NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
Fraunhofer provides no warranty of patent non-infringement with respect to this
software.

You may use this FDK AAC Codec software or modifications thereto only for
purposes that are authorized by appropriate patent licenses.

4.    DISCLAIMER

This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
including but not limited to the implied warranties of merchantability and
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
or consequential damages, including but not limited to procurement of substitute
goods or services; loss of use, data, or profits, or business interruption,
however caused and on any theory of liability, whether in contract, strict
liability, or tort (including negligence), arising in any way out of the use of
this software, even if advised of the possibility of such damage.

5.    CONTACT INFORMATION

Fraunhofer Institute for Integrated Circuits IIS
Attention: Audio and Multimedia Departments - FDK AAC LL
Am Wolfsmantel 33
91058 Erlangen, Germany

www.iis.fraunhofer.de/amm
amm-info@iis.fraunhofer.de
----------------------------------------------------------------------------- */

/**************************** AAC decoder library ******************************

   Author(s):   Josef Hoepfl

   Description: long/short-block decoding

*******************************************************************************/

#include "block.h"

#include "aac_rom.h"
#include "FDK_bitstream.h"
#include "scale.h"
#include "FDK_tools_rom.h"

#include "usacdec_fac.h"
#include "usacdec_lpd.h"
#include "usacdec_lpc.h"
#include "FDK_trigFcts.h"

#include "ac_arith_coder.h"

#include "aacdec_hcr.h"
#include "rvlc.h"

#if defined(__arm__)
#include "arm/block_arm.cpp"
#endif

/*!
  \brief Read escape sequence of codeword

  The function reads the escape sequence from the bitstream,
  if the absolute value of the quantized coefficient has the
  value 16.
  A limitation is implemented to maximal 21 bits according to
  ISO/IEC 14496-3:2009(E) 4.6.3.3.
  This limits the escape prefix to a maximum of eight 1's.
  If more than eight 1's are read, MAX_QUANTIZED_VALUE + 1 is
  returned, independent of the sign of parameter q.

  \return  quantized coefficient
*/
LONG CBlock_GetEscape(HANDLE_FDK_BITSTREAM bs, /*!< pointer to bitstream */
                      const LONG q)            /*!< quantized coefficient */
{
  if (fAbs(q) != 16) return (q);

  LONG i, off;
  for (i = 4; i < 13; i++) {
    if (FDKreadBit(bs) == 0) break;
  }

  if (i == 13) return (MAX_QUANTIZED_VALUE + 1);

  off = FDKreadBits(bs, i);
  i = off + (1 << i);

  if (q < 0) i = -i;

  return i;
}

AAC_DECODER_ERROR CBlock_ReadScaleFactorData(
    CAacDecoderChannelInfo *pAacDecoderChannelInfo, HANDLE_FDK_BITSTREAM bs,
    UINT flags) {
  int temp;
  int band;
  int group;
  int position = 0; /* accu for intensity delta coding */
  int factor = pAacDecoderChannelInfo->pDynData->RawDataInfo
                   .GlobalGain; /* accu for scale factor delta coding */
  UCHAR *pCodeBook = pAacDecoderChannelInfo->pDynData->aCodeBook;
  SHORT *pScaleFactor = pAacDecoderChannelInfo->pDynData->aScaleFactor;
  const CodeBookDescription *hcb = &AACcodeBookDescriptionTable[BOOKSCL];

  const USHORT(*CodeBook)[HuffmanEntries] = hcb->CodeBook;

  int ScaleFactorBandsTransmitted =
      GetScaleFactorBandsTransmitted(&pAacDecoderChannelInfo->icsInfo);
  for (group = 0; group < GetWindowGroups(&pAacDecoderChannelInfo->icsInfo);
       group++) {
    for (band = 0; band < ScaleFactorBandsTransmitted; band++) {
      switch (pCodeBook[band]) {
        case ZERO_HCB: /* zero book */
          pScaleFactor[band] = 0;
          break;

        default: /* decode scale factor */
          if (!((flags & (AC_USAC | AC_RSVD50 | AC_RSV603DA)) && band == 0 &&
                group == 0)) {
            temp = CBlock_DecodeHuffmanWordCB(bs, CodeBook);
            factor += temp - 60; /* MIDFAC 1.5 dB */
          }
          pScaleFactor[band] = factor - 100;
          break;

        case INTENSITY_HCB: /* intensity steering */
        case INTENSITY_HCB2:
          temp = CBlock_DecodeHuffmanWordCB(bs, CodeBook);
          position += temp - 60;
          pScaleFactor[band] = position - 100;
          break;

        case NOISE_HCB: /* PNS */
          if (flags & (AC_MPEGD_RES | AC_USAC | AC_RSVD50 | AC_RSV603DA)) {
            return AAC_DEC_PARSE_ERROR;
          }
          CPns_Read(&pAacDecoderChannelInfo->data.aac.PnsData, bs, hcb,
                    pAacDecoderChannelInfo->pDynData->aScaleFactor,
                    pAacDecoderChannelInfo->pDynData->RawDataInfo.GlobalGain,
                    band, group);
          break;
      }
    }
    pCodeBook += 16;
    pScaleFactor += 16;
  }

  return AAC_DEC_OK;
}

void CBlock_ScaleSpectralData(CAacDecoderChannelInfo *pAacDecoderChannelInfo,
                              UCHAR maxSfbs,
                              SamplingRateInfo *pSamplingRateInfo) {
  int band;
  int window;
  const SHORT *RESTRICT pSfbScale = pAacDecoderChannelInfo->pDynData->aSfbScale;
  SHORT *RESTRICT pSpecScale = pAacDecoderChannelInfo->specScale;
  int groupwin, group;
  const SHORT *RESTRICT BandOffsets = GetScaleFactorBandOffsets(
      &pAacDecoderChannelInfo->icsInfo, pSamplingRateInfo);
  SPECTRAL_PTR RESTRICT pSpectralCoefficient =
      pAacDecoderChannelInfo->pSpectralCoefficient;

  FDKmemclear(pSpecScale, 8 * sizeof(SHORT));

  for (window = 0, group = 0;
       group < GetWindowGroups(&pAacDecoderChannelInfo->icsInfo); group++) {
    for (groupwin = 0; groupwin < GetWindowGroupLength(
                                      &pAacDecoderChannelInfo->icsInfo, group);
         groupwin++, window++) {
      int SpecScale_window = pSpecScale[window];
      FIXP_DBL *pSpectrum = SPEC(pSpectralCoefficient, window,
                                 pAacDecoderChannelInfo->granuleLength);

      /* find scaling for current window */
      for (band = 0; band < maxSfbs; band++) {
        SpecScale_window =
            fMax(SpecScale_window, (int)pSfbScale[window * 16 + band]);
      }

      if (pAacDecoderChannelInfo->pDynData->TnsData.Active &&
          pAacDecoderChannelInfo->pDynData->TnsData.NumberOfFilters[window] >
              0) {
        int filter_index, SpecScale_window_tns;
        int tns_start, tns_stop;

        /* Find max scale of TNS bands */
        SpecScale_window_tns = 0;
        tns_start = GetMaximumTnsBands(&pAacDecoderChannelInfo->icsInfo,
                                       pSamplingRateInfo->samplingRateIndex);
        tns_stop = 0;
        for (filter_index = 0;
             filter_index < (int)pAacDecoderChannelInfo->pDynData->TnsData
                                .NumberOfFilters[window];
             filter_index++) {
          for (band = pAacDecoderChannelInfo->pDynData->TnsData
                          .Filter[window][filter_index]
                          .StartBand;
               band < pAacDecoderChannelInfo->pDynData->TnsData
                          .Filter[window][filter_index]
                          .StopBand;
               band++) {
            SpecScale_window_tns =
                fMax(SpecScale_window_tns, (int)pSfbScale[window * 16 + band]);
          }
          /* Find TNS line boundaries for all TNS filters */
          tns_start =
              fMin(tns_start, (int)pAacDecoderChannelInfo->pDynData->TnsData
                                  .Filter[window][filter_index]
                                  .StartBand);
          tns_stop =
              fMax(tns_stop, (int)pAacDecoderChannelInfo->pDynData->TnsData
                                 .Filter[window][filter_index]
                                 .StopBand);
        }
        SpecScale_window_tns = SpecScale_window_tns +
                               pAacDecoderChannelInfo->pDynData->TnsData.GainLd;
        FDK_ASSERT(tns_stop >= tns_start);
        /* Consider existing headroom of all MDCT lines inside the TNS bands. */
        SpecScale_window_tns -=
            getScalefactor(pSpectrum + BandOffsets[tns_start],
                           BandOffsets[tns_stop] - BandOffsets[tns_start]);
        if (SpecScale_window <= 17) {
          SpecScale_window_tns++;
        }
        /* Add enough mantissa head room such that the spectrum is still
           representable after applying TNS. */
        SpecScale_window = fMax(SpecScale_window, SpecScale_window_tns);
      }

      /* store scaling of current window */
      pSpecScale[window] = SpecScale_window;

#ifdef FUNCTION_CBlock_ScaleSpectralData_func1

      CBlock_ScaleSpectralData_func1(pSpectrum, maxSfbs, BandOffsets,
                                     SpecScale_window, pSfbScale, window);

#else  /* FUNCTION_CBlock_ScaleSpectralData_func1 */
      for (band = 0; band < maxSfbs; band++) {
        int scale = fMin(DFRACT_BITS - 1,
                         SpecScale_window - pSfbScale[window * 16 + band]);
        if (scale) {
          FDK_ASSERT(scale > 0);

          /* following relation can be used for optimizations:
           * (BandOffsets[i]%4) == 0 for all i */
          int max_index = BandOffsets[band + 1];
          DWORD_ALIGNED(pSpectrum);
          for (int index = BandOffsets[band]; index < max_index; index++) {
            pSpectrum[index] >>= scale;
          }
        }
      }
#endif /* FUNCTION_CBlock_ScaleSpectralData_func1 */
    }
  }
}

AAC_DECODER_ERROR CBlock_ReadSectionData(
    HANDLE_FDK_BITSTREAM bs, CAacDecoderChannelInfo *pAacDecoderChannelInfo,
    const SamplingRateInfo *pSamplingRateInfo, const UINT flags) {
  int top, band;
  int sect_len, sect_len_incr;
  int group;
  UCHAR sect_cb;
  UCHAR *pCodeBook = pAacDecoderChannelInfo->pDynData->aCodeBook;
  /* HCR input (long) */
  SHORT *pNumLinesInSec =
      pAacDecoderChannelInfo->pDynData->specificTo.aac.aNumLineInSec4Hcr;
  int numLinesInSecIdx = 0;
  UCHAR *pHcrCodeBook =
      pAacDecoderChannelInfo->pDynData->specificTo.aac.aCodeBooks4Hcr;
  const SHORT *BandOffsets = GetScaleFactorBandOffsets(
      &pAacDecoderChannelInfo->icsInfo, pSamplingRateInfo);
  pAacDecoderChannelInfo->pDynData->specificTo.aac.numberSection = 0;
  AAC_DECODER_ERROR ErrorStatus = AAC_DEC_OK;

  FDKmemclear(pCodeBook, sizeof(UCHAR) * (8 * 16));

  const int nbits =
      (IsLongBlock(&pAacDecoderChannelInfo->icsInfo) == 1) ? 5 : 3;

  int sect_esc_val = (1 << nbits) - 1;

  UCHAR ScaleFactorBandsTransmitted =
      GetScaleFactorBandsTransmitted(&pAacDecoderChannelInfo->icsInfo);
  for (group = 0; group < GetWindowGroups(&pAacDecoderChannelInfo->icsInfo);
       group++) {
    for (band = 0; band < ScaleFactorBandsTransmitted;) {
      sect_len = 0;
      if (flags & AC_ER_VCB11) {
        sect_cb = (UCHAR)FDKreadBits(bs, 5);
      } else
        sect_cb = (UCHAR)FDKreadBits(bs, 4);

      if (((flags & AC_ER_VCB11) == 0) || (sect_cb < 11) ||
          ((sect_cb > 11) && (sect_cb < 16))) {
        sect_len_incr = FDKreadBits(bs, nbits);
        while (sect_len_incr == sect_esc_val) {
          sect_len += sect_esc_val;
          sect_len_incr = FDKreadBits(bs, nbits);
        }
      } else {
        sect_len_incr = 1;
      }

      sect_len += sect_len_incr;

      top = band + sect_len;

      if (flags & AC_ER_HCR) {
        /* HCR input (long) -- collecting sideinfo (for HCR-_long_ only) */
        if (numLinesInSecIdx >= MAX_SFB_HCR) {
          return AAC_DEC_PARSE_ERROR;
        }
        if (top > (int)GetNumberOfScaleFactorBands(
                      &pAacDecoderChannelInfo->icsInfo, pSamplingRateInfo)) {
          return AAC_DEC_PARSE_ERROR;
        }
        pNumLinesInSec[numLinesInSecIdx] = BandOffsets[top] - BandOffsets[band];
        numLinesInSecIdx++;
        if (sect_cb == BOOKSCL) {
          return AAC_DEC_INVALID_CODE_BOOK;
        } else {
          *pHcrCodeBook++ = sect_cb;
        }
        pAacDecoderChannelInfo->pDynData->specificTo.aac.numberSection++;
      }

      /* Check spectral line limits */
      if (IsLongBlock(&(pAacDecoderChannelInfo->icsInfo))) {
        if (top > 64) {
          return AAC_DEC_DECODE_FRAME_ERROR;
        }
      } else { /* short block */
        if (top + group * 16 > (8 * 16)) {
          return AAC_DEC_DECODE_FRAME_ERROR;
        }
      }

      /* Check if decoded codebook index is feasible */
      if ((sect_cb == BOOKSCL) ||
          ((sect_cb == INTENSITY_HCB || sect_cb == INTENSITY_HCB2) &&
           pAacDecoderChannelInfo->pDynData->RawDataInfo.CommonWindow == 0)) {
        return AAC_DEC_INVALID_CODE_BOOK;
      }

      /* Store codebook index */
      for (; band < top; band++) {
        pCodeBook[group * 16 + band] = sect_cb;
      }
    }
  }

  return ErrorStatus;
}

/* mso: provides a faster way to i-quantize a whole band in one go */

/**
 * \brief inverse quantize one sfb. Each value of the sfb is processed according
 * to the formula: spectrum[i] = Sign(spectrum[i]) * Matissa(spectrum[i])^(4/3)
 * * 2^(lsb/4).
 * \param spectrum pointer to first line of the sfb to be inverse quantized.
 * \param noLines number of lines belonging to the sfb.
 * \param lsb last 2 bits of the scale factor of the sfb.
 * \param scale max allowed shift scale for the sfb.
 */
static inline void InverseQuantizeBand(
    FIXP_DBL *RESTRICT spectrum, const FIXP_DBL *RESTRICT InverseQuantTabler,
    const FIXP_DBL *RESTRICT MantissaTabler,
    const SCHAR *RESTRICT ExponentTabler, INT noLines, INT scale) {
  scale = scale + 1; /* +1 to compensate fMultDiv2 shift-right in loop */

  FIXP_DBL *RESTRICT ptr = spectrum;
  FIXP_DBL signedValue;

  for (INT i = noLines; i--;) {
    if ((signedValue = *ptr++) != FL2FXCONST_DBL(0)) {
      FIXP_DBL value = fAbs(signedValue);
      UINT freeBits = CntLeadingZeros(value);
      UINT exponent = 32 - freeBits;

      UINT x = (UINT)(LONG)value << (INT)freeBits;
      x <<= 1; /* shift out sign bit to avoid masking later on */
      UINT tableIndex = x >> 24;
      x = (x >> 20) & 0x0F;

      UINT r0 = (UINT)(LONG)InverseQuantTabler[tableIndex + 0];
      UINT r1 = (UINT)(LONG)InverseQuantTabler[tableIndex + 1];
      UINT temp = (r1 - r0) * x + (r0 << 4);

      value = fMultDiv2((FIXP_DBL)temp, MantissaTabler[exponent]);

      /* + 1 compensates fMultDiv2() */
      scaleValueInPlace(&value, scale + ExponentTabler[exponent]);

      signedValue = (signedValue < (FIXP_DBL)0) ? -value : value;
      ptr[-1] = signedValue;
    }
  }
}

static inline FIXP_DBL maxabs_D(const FIXP_DBL *pSpectralCoefficient,
                                const int noLines) {
  /* Find max spectral line value of the current sfb */
  FIXP_DBL locMax = (FIXP_DBL)0;
  int i;

  DWORD_ALIGNED(pSpectralCoefficient);

  for (i = noLines; i-- > 0;) {
    /* Expensive memory access */
    locMax = fMax(fixp_abs(pSpectralCoefficient[i]), locMax);
  }

  return locMax;
}

AAC_DECODER_ERROR CBlock_InverseQuantizeSpectralData(
    CAacDecoderChannelInfo *pAacDecoderChannelInfo,
    SamplingRateInfo *pSamplingRateInfo, UCHAR *band_is_noise,
    UCHAR active_band_search) {
  int window, group, groupwin, band;
  int ScaleFactorBandsTransmitted =
      GetScaleFactorBandsTransmitted(&pAacDecoderChannelInfo->icsInfo);
  UCHAR *RESTRICT pCodeBook = pAacDecoderChannelInfo->pDynData->aCodeBook;
  SHORT *RESTRICT pSfbScale = pAacDecoderChannelInfo->pDynData->aSfbScale;
  SHORT *RESTRICT pScaleFactor = pAacDecoderChannelInfo->pDynData->aScaleFactor;
  const SHORT *RESTRICT BandOffsets = GetScaleFactorBandOffsets(
      &pAacDecoderChannelInfo->icsInfo, pSamplingRateInfo);
  const SHORT total_bands =
      GetScaleFactorBandsTotal(&pAacDecoderChannelInfo->icsInfo);

  FDKmemclear(pAacDecoderChannelInfo->pDynData->aSfbScale,
              (8 * 16) * sizeof(SHORT));

  for (window = 0, group = 0;
       group < GetWindowGroups(&pAacDecoderChannelInfo->icsInfo); group++) {
    for (groupwin = 0; groupwin < GetWindowGroupLength(
                                      &pAacDecoderChannelInfo->icsInfo, group);
         groupwin++, window++) {
      /* inverse quantization */
      for (band = 0; band < ScaleFactorBandsTransmitted; band++) {
        FIXP_DBL *pSpectralCoefficient =
            SPEC(pAacDecoderChannelInfo->pSpectralCoefficient, window,
                 pAacDecoderChannelInfo->granuleLength) +
            BandOffsets[band];
        FIXP_DBL locMax;

        const int noLines = BandOffsets[band + 1] - BandOffsets[band];
        const int bnds = group * 16 + band;

        if ((pCodeBook[bnds] == ZERO_HCB) ||
            (pCodeBook[bnds] == INTENSITY_HCB) ||
            (pCodeBook[bnds] == INTENSITY_HCB2))
          continue;

        if (pCodeBook[bnds] == NOISE_HCB) {
          /* Leave headroom for PNS values. + 1 because ceil(log2(2^(0.25*3))) =
             1, worst case of additional headroom required because of the
             scalefactor. */
          pSfbScale[window * 16 + band] = (pScaleFactor[bnds] >> 2) + 1;
          continue;
        }

        locMax = maxabs_D(pSpectralCoefficient, noLines);

        if (active_band_search) {
          if (locMax != FIXP_DBL(0)) {
            band_is_noise[group * 16 + band] = 0;
          }
        }

        /* Cheap robustness improvement - Do not remove!!! */
        if (fixp_abs(locMax) > (FIXP_DBL)MAX_QUANTIZED_VALUE) {
          return AAC_DEC_PARSE_ERROR;
        }

        /* Added by Youliy Ninov:
        The inverse quantization operation is given by (ISO/IEC 14496-3:2009(E))
        by:

        x_invquant=Sign(x_quant). abs(x_quant)^(4/3)

        We apply a gain, derived from the scale factor for the particular sfb,
        according to the following function:

        gain=2^(0.25*ScaleFactor)

        So, after scaling we have:

        x_rescale=gain*x_invquant=Sign(x_quant)*2^(0.25*ScaleFactor)*abs(s_quant)^(4/3)

        We could represent the ScaleFactor as:

        ScaleFactor= (ScaleFactor >> 2)*4 + ScaleFactor %4

        When we substitute it we get:

        x_rescale=Sign(x_quant)*2^(ScaleFactor>>2)* (
        2^(0.25*(ScaleFactor%4))*abs(s_quant)^(4/3))

        When we set: msb=(ScaleFactor>>2) and lsb=(ScaleFactor%4), we obtain:

        x_rescale=Sign(x_quant)*(2^msb)* ( 2^(lsb/4)*abs(s_quant)^(4/3))

        The rescaled output can be represented by:
           mantissa : Sign(x_quant)*( 2^(lsb/4)*abs(s_quant)^(4/3))
           exponent :(2^msb)

        */

        int msb = pScaleFactor[bnds] >> 2;

        /* Inverse quantize band only if it is not empty */
        if (locMax != FIXP_DBL(0)) {
          int lsb = pScaleFactor[bnds] & 0x03;

          int scale = EvaluatePower43(&locMax, lsb);

          scale = CntLeadingZeros(locMax) - scale - 2;

          pSfbScale[window * 16 + band] = msb - scale;
          InverseQuantizeBand(pSpectralCoefficient, InverseQuantTable,
                              MantissaTable[lsb], ExponentTable[lsb], noLines,
                              scale);
        } else {
          pSfbScale[window * 16 + band] = msb;
        }

      } /* for (band=0; band < ScaleFactorBandsTransmitted; band++) */

      /* Make sure the array is cleared to the end */
      SHORT start_clear = BandOffsets[ScaleFactorBandsTransmitted];
      SHORT end_clear = BandOffsets[total_bands];
      int diff_clear = (int)(end_clear - start_clear);
      FIXP_DBL *pSpectralCoefficient =
          SPEC(pAacDecoderChannelInfo->pSpectralCoefficient, window,
               pAacDecoderChannelInfo->granuleLength) +
          start_clear;
      FDKmemclear(pSpectralCoefficient, diff_clear * sizeof(FIXP_DBL));

    } /* for (groupwin=0; groupwin <
         GetWindowGroupLength(&pAacDecoderChannelInfo->icsInfo,group);
         groupwin++, window++) */
  }   /* for (window=0, group=0; group <
         GetWindowGroups(&pAacDecoderChannelInfo->icsInfo); group++)*/

  return AAC_DEC_OK;
}

AAC_DECODER_ERROR CBlock_ReadSpectralData(
    HANDLE_FDK_BITSTREAM bs, CAacDecoderChannelInfo *pAacDecoderChannelInfo,
    const SamplingRateInfo *pSamplingRateInfo, const UINT flags) {
  int index, i;
  const SHORT *RESTRICT BandOffsets = GetScaleFactorBandOffsets(
      &pAacDecoderChannelInfo->icsInfo, pSamplingRateInfo);

  SPECTRAL_PTR pSpectralCoefficient =
      pAacDecoderChannelInfo->pSpectralCoefficient;

  FDK_ASSERT(BandOffsets != NULL);

  FDKmemclear(pSpectralCoefficient, sizeof(SPECTRUM));

  if ((flags & AC_ER_HCR) == 0) {
    int group;
    int groupoffset;
    UCHAR *pCodeBook = pAacDecoderChannelInfo->pDynData->aCodeBook;
    int ScaleFactorBandsTransmitted =
        GetScaleFactorBandsTransmitted(&pAacDecoderChannelInfo->icsInfo);
    int granuleLength = pAacDecoderChannelInfo->granuleLength;

    groupoffset = 0;

    /* plain huffman decoder  short */
    int max_group = GetWindowGroups(&pAacDecoderChannelInfo->icsInfo);

    for (group = 0; group < max_group; group++) {
      int max_groupwin =
          GetWindowGroupLength(&pAacDecoderChannelInfo->icsInfo, group);
      int band;

      int bnds = group * 16;

      int bandOffset1 = BandOffsets[0];
      for (band = 0; band < ScaleFactorBandsTransmitted; band++, bnds++) {
        UCHAR currentCB = pCodeBook[bnds];
        int bandOffset0 = bandOffset1;
        bandOffset1 = BandOffsets[band + 1];

        /* patch to run plain-huffman-decoder with vcb11 input codebooks
         * (LAV-checking might be possible below using the virtual cb and a
         * LAV-table) */
        if ((currentCB >= 16) && (currentCB <= 31)) {
          pCodeBook[bnds] = currentCB = 11;
        }
        if (((currentCB != ZERO_HCB) && (currentCB != NOISE_HCB) &&
             (currentCB != INTENSITY_HCB) && (currentCB != INTENSITY_HCB2))) {
          const CodeBookDescription *hcb =
              &AACcodeBookDescriptionTable[currentCB];
          int step = hcb->Dimension;
          int offset = hcb->Offset;
          int bits = hcb->numBits;
          int mask = (1 << bits) - 1;
          const USHORT(*CodeBook)[HuffmanEntries] = hcb->CodeBook;
          int groupwin;

          FIXP_DBL *mdctSpectrum =
              &pSpectralCoefficient[groupoffset * granuleLength];

          if (offset == 0) {
            for (groupwin = 0; groupwin < max_groupwin; groupwin++) {
              for (index = bandOffset0; index < bandOffset1; index += step) {
                int idx = CBlock_DecodeHuffmanWordCB(bs, CodeBook);
                for (i = 0; i < step; i++, idx >>= bits) {
                  FIXP_DBL tmp = (FIXP_DBL)((idx & mask) - offset);
                  if (tmp != FIXP_DBL(0)) tmp = (FDKreadBit(bs)) ? -tmp : tmp;
                  mdctSpectrum[index + i] = tmp;
                }

                if (currentCB == ESCBOOK) {
                  for (int j = 0; j < 2; j++)
                    mdctSpectrum[index + j] = (FIXP_DBL)CBlock_GetEscape(
                        bs, (LONG)mdctSpectrum[index + j]);
                }
              }
              mdctSpectrum += granuleLength;
            }
          } else {
            for (groupwin = 0; groupwin < max_groupwin; groupwin++) {
              for (index = bandOffset0; index < bandOffset1; index += step) {
                int idx = CBlock_DecodeHuffmanWordCB(bs, CodeBook);
                for (i = 0; i < step; i++, idx >>= bits) {
                  mdctSpectrum[index + i] = (FIXP_DBL)((idx & mask) - offset);
                }
                if (currentCB == ESCBOOK) {
                  for (int j = 0; j < 2; j++)
                    mdctSpectrum[index + j] = (FIXP_DBL)CBlock_GetEscape(
                        bs, (LONG)mdctSpectrum[index + j]);
                }
              }
              mdctSpectrum += granuleLength;
            }
          }
        }
      }
      groupoffset += max_groupwin;
    }
    /* plain huffman decoding (short) finished */
  }

  /* HCR - Huffman Codeword Reordering  short */
  else /* if ( flags & AC_ER_HCR ) */

  {
    H_HCR_INFO hHcr = &pAacDecoderChannelInfo->pComData->overlay.aac.erHcrInfo;

    int hcrStatus = 0;

    /* advanced Huffman decoding starts here (HCR decoding :) */
    if (pAacDecoderChannelInfo->pDynData->specificTo.aac
            .lenOfReorderedSpectralData != 0) {
      /* HCR initialization short */
      hcrStatus = HcrInit(hHcr, pAacDecoderChannelInfo, pSamplingRateInfo, bs);

      if (hcrStatus != 0) {
        return AAC_DEC_DECODE_FRAME_ERROR;
      }

      /* HCR decoding short */
      hcrStatus =
          HcrDecoder(hHcr, pAacDecoderChannelInfo, pSamplingRateInfo, bs);

      if (hcrStatus != 0) {
#if HCR_ERROR_CONCEALMENT
        HcrMuteErroneousLines(hHcr);
#else
        return AAC_DEC_DECODE_FRAME_ERROR;
#endif /* HCR_ERROR_CONCEALMENT */
      }

      FDKpushFor(bs, pAacDecoderChannelInfo->pDynData->specificTo.aac
                         .lenOfReorderedSpectralData);
    }
  }
  /* HCR - Huffman Codeword Reordering short finished */

  if (IsLongBlock(&pAacDecoderChannelInfo->icsInfo) &&
      !(flags & (AC_ELD | AC_SCALABLE))) {
    /* apply pulse data */
    CPulseData_Apply(
        &pAacDecoderChannelInfo->pDynData->specificTo.aac.PulseData,
        GetScaleFactorBandOffsets(&pAacDecoderChannelInfo->icsInfo,
                                  pSamplingRateInfo),
        SPEC_LONG(pSpectralCoefficient));
  }

  return AAC_DEC_OK;
}

static const FIXP_SGL noise_level_tab[8] = {
    /* FDKpow(2, (float)(noise_level-14)/3.0f) * 2; (*2 to compensate for
       fMultDiv2) noise_level_tab(noise_level==0) == 0 by definition
    */
    FX_DBL2FXCONST_SGL(0x00000000 /*0x0a145173*/),
    FX_DBL2FXCONST_SGL(0x0cb2ff5e),
    FX_DBL2FXCONST_SGL(0x10000000),
    FX_DBL2FXCONST_SGL(0x1428a2e7),
    FX_DBL2FXCONST_SGL(0x1965febd),
    FX_DBL2FXCONST_SGL(0x20000000),
    FX_DBL2FXCONST_SGL(0x28514606),
    FX_DBL2FXCONST_SGL(0x32cbfd33)};

void CBlock_ApplyNoise(CAacDecoderChannelInfo *pAacDecoderChannelInfo,
                       SamplingRateInfo *pSamplingRateInfo, ULONG *nfRandomSeed,
                       UCHAR *band_is_noise) {
  const SHORT *swb_offset = GetScaleFactorBandOffsets(
      &pAacDecoderChannelInfo->icsInfo, pSamplingRateInfo);
  int g, win, gwin, sfb, noiseFillingStartOffset, nfStartOffset_sfb;

  /* Obtain noise level and scale factor offset. */
  int noise_level = pAacDecoderChannelInfo->pDynData->specificTo.usac
                        .fd_noise_level_and_offset >>
                    5;
  const FIXP_SGL noiseVal_pos = noise_level_tab[noise_level];

  /* noise_offset can change even when noise_level=0. Neccesary for IGF stereo
   * filling */
  const int noise_offset = (pAacDecoderChannelInfo->pDynData->specificTo.usac
                                .fd_noise_level_and_offset &
                            0x1f) -
                           16;

  int max_sfb =
      GetScaleFactorBandsTransmitted(&pAacDecoderChannelInfo->icsInfo);

  noiseFillingStartOffset =
      (GetWindowSequence(&pAacDecoderChannelInfo->icsInfo) == BLOCK_SHORT)
          ? 20
          : 160;
  if (pAacDecoderChannelInfo->granuleLength == 96) {
    noiseFillingStartOffset =
        (3 * noiseFillingStartOffset) /
        4; /* scale offset with 3/4 for coreCoderFrameLength == 768 */
  }

  /* determine sfb from where on noise filling is applied */
  for (sfb = 0; swb_offset[sfb] < noiseFillingStartOffset; sfb++)
    ;
  nfStartOffset_sfb = sfb;

  /* if (noise_level!=0) */
  {
    for (g = 0, win = 0; g < GetWindowGroups(&pAacDecoderChannelInfo->icsInfo);
         g++) {
      int windowGroupLength =
          GetWindowGroupLength(&pAacDecoderChannelInfo->icsInfo, g);
      for (sfb = nfStartOffset_sfb; sfb < max_sfb; sfb++) {
        int bin_start = swb_offset[sfb];
        int bin_stop = swb_offset[sfb + 1];

        int flagN = band_is_noise[g * 16 + sfb];

        /* if all bins of one sfb in one window group are zero modify the scale
         * factor by noise_offset */
        if (flagN) {
          /* Change scaling factors for empty signal bands */
          pAacDecoderChannelInfo->pDynData->aScaleFactor[g * 16 + sfb] +=
              noise_offset;
          /* scale factor "sf" implied gain "g" is g = 2^(sf/4) */
          for (gwin = 0; gwin < windowGroupLength; gwin++) {
            pAacDecoderChannelInfo->pDynData
                ->aSfbScale[(win + gwin) * 16 + sfb] += (noise_offset >> 2);
          }
        }

        ULONG seed = *nfRandomSeed;
        /* + 1 because exponent of MantissaTable[lsb][0] is always 1. */
        int scale =
            (pAacDecoderChannelInfo->pDynData->aScaleFactor[g * 16 + sfb] >>
             2) +
            1;
        int lsb =
            pAacDecoderChannelInfo->pDynData->aScaleFactor[g * 16 + sfb] & 3;
        FIXP_DBL mantissa = MantissaTable[lsb][0];

        for (gwin = 0; gwin < windowGroupLength; gwin++) {
          FIXP_DBL *pSpec =
              SPEC(pAacDecoderChannelInfo->pSpectralCoefficient, win + gwin,
                   pAacDecoderChannelInfo->granuleLength);

          int scale1 = scale - pAacDecoderChannelInfo->pDynData
                                   ->aSfbScale[(win + gwin) * 16 + sfb];
          FIXP_DBL scaled_noiseVal_pos =
              scaleValue(fMultDiv2(noiseVal_pos, mantissa), scale1);
          FIXP_DBL scaled_noiseVal_neg = -scaled_noiseVal_pos;

          /* If the whole band is zero, just fill without checking */
          if (flagN) {
            for (int bin = bin_start; bin < bin_stop; bin++) {
              seed = (ULONG)(
                  (UINT64)seed * 69069 +
                  5); /* Inlined: UsacRandomSign - origin in usacdec_lpd.h */
              pSpec[bin] =
                  (seed & 0x10000) ? scaled_noiseVal_neg : scaled_noiseVal_pos;
            } /* for (bin...) */
          }
          /*If band is sparsely filled, check for 0 and fill */
          else {
            for (int bin = bin_start; bin < bin_stop; bin++) {
              if (pSpec[bin] == (FIXP_DBL)0) {
                seed = (ULONG)(
                    (UINT64)seed * 69069 +
                    5); /* Inlined: UsacRandomSign - origin in usacdec_lpd.h */
                pSpec[bin] = (seed & 0x10000) ? scaled_noiseVal_neg
                                              : scaled_noiseVal_pos;
              }
            } /* for (bin...) */
          }

        } /* for (gwin...) */
        *nfRandomSeed = seed;
      } /* for (sfb...) */
      win += windowGroupLength;
    } /* for (g...) */

  } /* ... */
}

AAC_DECODER_ERROR CBlock_ReadAcSpectralData(
    HANDLE_FDK_BITSTREAM hBs, CAacDecoderChannelInfo *pAacDecoderChannelInfo,
    CAacDecoderStaticChannelInfo *pAacDecoderStaticChannelInfo,
    const SamplingRateInfo *pSamplingRateInfo, const UINT frame_length,
    const UINT flags) {
  AAC_DECODER_ERROR errorAAC = AAC_DEC_OK;
  ARITH_CODING_ERROR error = ARITH_CODER_OK;
  int arith_reset_flag, lg, numWin, win, winLen;
  const SHORT *RESTRICT BandOffsets;

  /* number of transmitted spectral coefficients */
  BandOffsets = GetScaleFactorBandOffsets(&pAacDecoderChannelInfo->icsInfo,
                                          pSamplingRateInfo);
  lg = BandOffsets[GetScaleFactorBandsTransmitted(
      &pAacDecoderChannelInfo->icsInfo)];

  numWin = GetWindowsPerFrame(&pAacDecoderChannelInfo->icsInfo);
  winLen = (IsLongBlock(&pAacDecoderChannelInfo->icsInfo))
               ? (int)frame_length
               : (int)frame_length / numWin;

  if (flags & AC_INDEP) {
    arith_reset_flag = 1;
  } else {
    arith_reset_flag = (USHORT)FDKreadBits(hBs, 1);
  }

  for (win = 0; win < numWin; win++) {
    error =
        CArco_DecodeArithData(pAacDecoderStaticChannelInfo->hArCo, hBs,
                              SPEC(pAacDecoderChannelInfo->pSpectralCoefficient,
                                   win, pAacDecoderChannelInfo->granuleLength),
                              lg, winLen, arith_reset_flag && (win == 0));
    if (error != ARITH_CODER_OK) {
      goto bail;
    }
  }

bail:
  if (error == ARITH_CODER_ERROR) {
    errorAAC = AAC_DEC_PARSE_ERROR;
  }

  return errorAAC;
}

void ApplyTools(CAacDecoderChannelInfo *pAacDecoderChannelInfo[],
                const SamplingRateInfo *pSamplingRateInfo, const UINT flags,
                const UINT elFlags, const int channel,
                const int common_window) {
  if (!(flags & (AC_USAC | AC_RSVD50 | AC_MPEGD_RES | AC_RSV603DA))) {
    CPns_Apply(&pAacDecoderChannelInfo[channel]->data.aac.PnsData,
               &pAacDecoderChannelInfo[channel]->icsInfo,
               pAacDecoderChannelInfo[channel]->pSpectralCoefficient,
               pAacDecoderChannelInfo[channel]->specScale,
               pAacDecoderChannelInfo[channel]->pDynData->aScaleFactor,
               pSamplingRateInfo,
               pAacDecoderChannelInfo[channel]->granuleLength, channel);
  }

  UCHAR nbands =
      GetScaleFactorBandsTransmitted(&pAacDecoderChannelInfo[channel]->icsInfo);

  CTns_Apply(&pAacDecoderChannelInfo[channel]->pDynData->TnsData,
             &pAacDecoderChannelInfo[channel]->icsInfo,
             pAacDecoderChannelInfo[channel]->pSpectralCoefficient,
             pSamplingRateInfo, pAacDecoderChannelInfo[channel]->granuleLength,
             nbands, (elFlags & AC_EL_ENHANCED_NOISE) ? 1 : 0, flags);
}

static int getWindow2Nr(int length, int shape) {
  int nr = 0;

  if (shape == 2) {
    /* Low Overlap, 3/4 zeroed */
    nr = (length * 3) >> 2;
  }

  return nr;
}

FIXP_DBL get_gain(const FIXP_DBL *x, const FIXP_DBL *y, int n) {
  FIXP_DBL corr = (FIXP_DBL)0;
  FIXP_DBL ener = (FIXP_DBL)1;

  int headroom_x = getScalefactor(x, n);
  int headroom_y = getScalefactor(y, n);

  /*Calculate the normalization necessary due to addition*/
  /* Check for power of two /special case */
  INT width_shift = (INT)(fNormz((FIXP_DBL)n));
  /* Get the number of bits necessary minus one, because we need one sign bit
   * only */
  width_shift = 31 - width_shift;

  for (int i = 0; i < n; i++) {
    corr +=
        fMultDiv2((x[i] << headroom_x), (y[i] << headroom_y)) >> width_shift;
    ener += fPow2Div2((y[i] << headroom_y)) >> width_shift;
  }

  int exp_corr = (17 - headroom_x) + (17 - headroom_y) + width_shift + 1;
  int exp_ener = ((17 - headroom_y) << 1) + width_shift + 1;

  int temp_exp = 0;
  FIXP_DBL output = fDivNormSigned(corr, ener, &temp_exp);

  int output_exp = (exp_corr - exp_ener) + temp_exp;

  INT output_shift = 17 - output_exp;
  output_shift = fMin(output_shift, 31);

  output = scaleValue(output, -output_shift);

  return output;
}

void CBlock_FrequencyToTime(
    CAacDecoderStaticChannelInfo *pAacDecoderStaticChannelInfo,
    CAacDecoderChannelInfo *pAacDecoderChannelInfo, FIXP_PCM outSamples[],
    const SHORT frameLen, const int frameOk, FIXP_DBL *pWorkBuffer1,
    UINT elFlags, INT elCh) {
  int fr, fl, tl, nSpec;

#if defined(FDK_ASSERT_ENABLE)
  LONG nSamples;
#endif

  /* Determine left slope length (fl), right slope length (fr) and transform
     length (tl). USAC: The slope length may mismatch with the previous frame in
     case of LPD / FD transitions. The adjustment is handled by the imdct
     implementation.
  */
  tl = frameLen;
  nSpec = 1;

  switch (pAacDecoderChannelInfo->icsInfo.WindowSequence) {
    default:
    case BLOCK_LONG:
      fl = frameLen;
      fr = frameLen -
           getWindow2Nr(frameLen,
                        GetWindowShape(&pAacDecoderChannelInfo->icsInfo));
      /* New startup needs differentiation between sine shape and low overlap
         shape. This is a special case for the LD-AAC transformation windows,
         because the slope length can be different while using the same window
         sequence. */
      if (pAacDecoderStaticChannelInfo->IMdct.prev_tl == 0) {
        fl = fr;
      }
      break;
    case BLOCK_STOP:
      fl = frameLen >> 3;
      fr = frameLen;
      break;
    case BLOCK_START: /* or StopStartSequence */
      fl = frameLen;
      fr = frameLen >> 3;
      break;
    case BLOCK_SHORT:
      fl = fr = frameLen >> 3;
      tl >>= 3;
      nSpec = 8;
      break;
  }

  {
    int last_frame_lost = pAacDecoderStaticChannelInfo->last_lpc_lost;

    if (pAacDecoderStaticChannelInfo->last_core_mode == LPD) {
      INT fac_FB = 1;
      if (elFlags & AC_EL_FULLBANDLPD) {
        fac_FB = 2;
      }

      FIXP_DBL *synth;

      /* Keep some free space at the beginning of the buffer. To be used for
       * past data */
      if (!(elFlags & AC_EL_LPDSTEREOIDX)) {
        synth = pWorkBuffer1 + ((PIT_MAX_MAX - (1 * L_SUBFR)) * fac_FB);
      } else {
        synth = pWorkBuffer1 + PIT_MAX_MAX * fac_FB;
      }

      int fac_length =
          (pAacDecoderChannelInfo->icsInfo.WindowSequence == BLOCK_SHORT)
              ? (frameLen >> 4)
              : (frameLen >> 3);

      INT pitch[NB_SUBFR_SUPERFR + SYN_SFD];
      FIXP_DBL pit_gain[NB_SUBFR_SUPERFR + SYN_SFD];

      int nbDiv = (elFlags & AC_EL_FULLBANDLPD) ? 2 : 4;
      int lFrame = (elFlags & AC_EL_FULLBANDLPD) ? frameLen / 2 : frameLen;
      int nbSubfr =
          lFrame / (nbDiv * L_SUBFR); /* number of subframes per division */
      int LpdSfd = (nbDiv * nbSubfr) >> 1;
      int SynSfd = LpdSfd - BPF_SFD;

      FDKmemclear(
          pitch,
          sizeof(
              pitch));  // added to prevent ferret errors in bass_pf_1sf_delay
      FDKmemclear(pit_gain, sizeof(pit_gain));

      /* FAC case */
      if (pAacDecoderStaticChannelInfo->last_lpd_mode == 0 ||
          pAacDecoderStaticChannelInfo->last_lpd_mode == 4) {
        FIXP_DBL fac_buf[LFAC];
        FIXP_LPC *A = pAacDecoderChannelInfo->data.usac.lp_coeff[0];

        if (!frameOk || last_frame_lost ||
            (pAacDecoderChannelInfo->data.usac.fac_data[0] == NULL)) {
          FDKmemclear(fac_buf,
                      pAacDecoderChannelInfo->granuleLength * sizeof(FIXP_DBL));
          pAacDecoderChannelInfo->data.usac.fac_data[0] = fac_buf;
          pAacDecoderChannelInfo->data.usac.fac_data_e[0] = 0;
        }

        INT A_exp; /* linear prediction coefficients exponent */
        {
          for (int i = 0; i < M_LP_FILTER_ORDER; i++) {
            A[i] = FX_DBL2FX_LPC(fixp_cos(
                fMult(pAacDecoderStaticChannelInfo->lpc4_lsf[i],
                      FL2FXCONST_SGL((1 << LSPARG_SCALE) * M_PI / 6400.0)),
                LSF_SCALE - LSPARG_SCALE));
          }

          E_LPC_f_lsp_a_conversion(A, A, &A_exp);
        }

#if defined(FDK_ASSERT_ENABLE)
        nSamples =
#endif
            CLpd_FAC_Acelp2Mdct(
                &pAacDecoderStaticChannelInfo->IMdct, synth,
                SPEC_LONG(pAacDecoderChannelInfo->pSpectralCoefficient),
                pAacDecoderChannelInfo->specScale, nSpec,
                pAacDecoderChannelInfo->data.usac.fac_data[0],
                pAacDecoderChannelInfo->data.usac.fac_data_e[0], fac_length,
                frameLen, tl,
                FDKgetWindowSlope(
                    fr, GetWindowShape(&pAacDecoderChannelInfo->icsInfo)),
                fr, A, A_exp, &pAacDecoderStaticChannelInfo->acelp,
                (FIXP_DBL)0, /* FAC gain has already been applied. */
                (last_frame_lost || !frameOk), 1,
                pAacDecoderStaticChannelInfo->last_lpd_mode, 0,
                pAacDecoderChannelInfo->currAliasingSymmetry);

      } else {
#if defined(FDK_ASSERT_ENABLE)
        nSamples =
#endif
            imlt_block(
                &pAacDecoderStaticChannelInfo->IMdct, synth,
                SPEC_LONG(pAacDecoderChannelInfo->pSpectralCoefficient),
                pAacDecoderChannelInfo->specScale, nSpec, frameLen, tl,
                FDKgetWindowSlope(
                    fl, GetWindowShape(&pAacDecoderChannelInfo->icsInfo)),
                fl,
                FDKgetWindowSlope(
                    fr, GetWindowShape(&pAacDecoderChannelInfo->icsInfo)),
                fr, (FIXP_DBL)0,
                pAacDecoderChannelInfo->currAliasingSymmetry
                    ? MLT_FLAG_CURR_ALIAS_SYMMETRY
                    : 0);
      }
      FDK_ASSERT(nSamples == frameLen);

      /* The "if" clause is entered both for fullbandLpd mono and
       * non-fullbandLpd*. The "else"-> just for fullbandLpd stereo*/
      if (!(elFlags & AC_EL_LPDSTEREOIDX)) {
        FDKmemcpy(pitch, pAacDecoderStaticChannelInfo->old_T_pf,
                  SynSfd * sizeof(INT));
        FDKmemcpy(pit_gain, pAacDecoderStaticChannelInfo->old_gain_pf,
                  SynSfd * sizeof(FIXP_DBL));

        for (int i = SynSfd; i < LpdSfd + 3; i++) {
          pitch[i] = L_SUBFR;
          pit_gain[i] = (FIXP_DBL)0;
        }

        if (pAacDecoderStaticChannelInfo->last_lpd_mode == 0) {
          pitch[SynSfd] = pitch[SynSfd - 1];
          pit_gain[SynSfd] = pit_gain[SynSfd - 1];
          if (IsLongBlock(&pAacDecoderChannelInfo->icsInfo)) {
            pitch[SynSfd + 1] = pitch[SynSfd];
            pit_gain[SynSfd + 1] = pit_gain[SynSfd];
          }
        }

        /* Copy old data to the beginning of the buffer */
        {
          FDKmemcpy(
              pWorkBuffer1, pAacDecoderStaticChannelInfo->old_synth,
              ((PIT_MAX_MAX - (1 * L_SUBFR)) * fac_FB) * sizeof(FIXP_DBL));
        }

        FIXP_DBL *p2_synth = pWorkBuffer1 + (PIT_MAX_MAX * fac_FB);

        /* recalculate pitch gain to allow postfilering on FAC area */
        for (int i = 0; i < SynSfd + 2; i++) {
          int T = pitch[i];
          FIXP_DBL gain = pit_gain[i];

          if (gain > (FIXP_DBL)0) {
            gain = get_gain(&p2_synth[i * L_SUBFR * fac_FB],
                            &p2_synth[(i * L_SUBFR * fac_FB) - fac_FB * T],
                            L_SUBFR * fac_FB);
            pit_gain[i] = gain;
          }
        }

        bass_pf_1sf_delay(p2_synth, pitch, pit_gain, frameLen,
                          (LpdSfd + 2) * L_SUBFR + BPF_SFD * L_SUBFR,
                          frameLen - (LpdSfd + 4) * L_SUBFR, outSamples,
                          pAacDecoderStaticChannelInfo->mem_bpf);
      }

    } else /* last_core_mode was not LPD */
    {
      FIXP_DBL *tmp =
          pAacDecoderChannelInfo->pComStaticData->pWorkBufferCore1->mdctOutTemp;
#if defined(FDK_ASSERT_ENABLE)
      nSamples =
#endif
          imlt_block(&pAacDecoderStaticChannelInfo->IMdct, tmp,
                     SPEC_LONG(pAacDecoderChannelInfo->pSpectralCoefficient),
                     pAacDecoderChannelInfo->specScale, nSpec, frameLen, tl,
                     FDKgetWindowSlope(
                         fl, GetWindowShape(&pAacDecoderChannelInfo->icsInfo)),
                     fl,
                     FDKgetWindowSlope(
                         fr, GetWindowShape(&pAacDecoderChannelInfo->icsInfo)),
                     fr, (FIXP_DBL)0,
                     pAacDecoderChannelInfo->currAliasingSymmetry
                         ? MLT_FLAG_CURR_ALIAS_SYMMETRY
                         : 0);

      scaleValuesSaturate(outSamples, tmp, frameLen, MDCT_OUT_HEADROOM);
    }
  }

  FDK_ASSERT(nSamples == frameLen);

  pAacDecoderStaticChannelInfo->last_core_mode =
      (pAacDecoderChannelInfo->icsInfo.WindowSequence == BLOCK_SHORT) ? FD_SHORT
                                                                      : FD_LONG;
  pAacDecoderStaticChannelInfo->last_lpd_mode = 255;
}

#include "ldfiltbank.h"
void CBlock_FrequencyToTimeLowDelay(
    CAacDecoderStaticChannelInfo *pAacDecoderStaticChannelInfo,
    CAacDecoderChannelInfo *pAacDecoderChannelInfo, FIXP_PCM outSamples[],
    const short frameLen) {
  InvMdctTransformLowDelay_fdk(
      SPEC_LONG(pAacDecoderChannelInfo->pSpectralCoefficient),
      pAacDecoderChannelInfo->specScale[0], outSamples,
      pAacDecoderStaticChannelInfo->pOverlapBuffer, frameLen);
}