summaryrefslogtreecommitdiffstats
path: root/contrib/ThreadsafeQueue.h
blob: 8b385d63344222d1d466279582dbb916340272e0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
/*
   Copyright (C) 2007, 2008, 2009, 2010, 2011 Her Majesty the Queen in
   Right of Canada (Communications Research Center Canada)

   Copyright (C) 2023
   Matthias P. Braendli, matthias.braendli@mpb.li

   An implementation for a threadsafe queue, depends on C++11

   When creating a ThreadsafeQueue, one can specify the minimal number
   of elements it must contain before it is possible to take one
   element out.
 */
/*
   This program is free software: you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation, either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <https://www.gnu.org/licenses/>.
 */

#pragma once

#include <mutex>
#include <condition_variable>
#include <queue>
#include <utility>
#include <cassert>

/* This queue is meant to be used by two threads. One producer
 * that pushes elements into the queue, and one consumer that
 * retrieves the elements.
 *
 * The queue can make the consumer block until an element
 * is available, or a wakeup requested.
 */

/* Class thrown by blocking pop to tell the consumer
 * that there's a wakeup requested. */
class ThreadsafeQueueWakeup {};

template<typename T>
class ThreadsafeQueue
{
public:
    /* Push one element into the queue, and notify another thread that
     * might be waiting.
     *
     * if max_size > 0 and the queue already contains at least max_size elements,
     * the element gets discarded.
     *
     * returns the new queue size.
     */
    size_t push(T const& val, size_t max_size = 0)
    {
        std::unique_lock<std::mutex> lock(the_mutex);
        size_t queue_size_before = the_queue.size();
        if (max_size == 0) {
            the_queue.push(val);
        }
        else if (queue_size_before < max_size) {
            the_queue.push(val);
        }
        size_t queue_size = the_queue.size();
        lock.unlock();
        the_rx_notification.notify_one();

        return queue_size;
    }

    size_t push(T&& val, size_t max_size = 0)
    {
        std::unique_lock<std::mutex> lock(the_mutex);
        size_t queue_size_before = the_queue.size();
        if (max_size == 0) {
            the_queue.emplace(std::move(val));
        }
        else if (queue_size_before < max_size) {
            the_queue.emplace(std::move(val));
        }
        size_t queue_size = the_queue.size();
        lock.unlock();

        the_rx_notification.notify_one();

        return queue_size;
    }

    struct push_overflow_result { bool overflowed; size_t new_size; };

    /* Push one element into the queue, and if queue is
     * full remove one element from the other end.
     *
     * max_size == 0 is not allowed.
     *
     * returns the new queue size and a flag if overflow occurred.
     */
    push_overflow_result push_overflow(T const& val, size_t max_size)
    {
        assert(max_size > 0);
        std::unique_lock<std::mutex> lock(the_mutex);

        bool overflow = false;
        while (the_queue.size() >= max_size) {
            overflow = true;
            the_queue.pop();
        }
        the_queue.push(val);
        const size_t queue_size = the_queue.size();
        lock.unlock();

        the_rx_notification.notify_one();

        return {overflow, queue_size};
    }

    push_overflow_result push_overflow(T&& val, size_t max_size)
    {
        assert(max_size > 0);
        std::unique_lock<std::mutex> lock(the_mutex);

        bool overflow = false;
        while (the_queue.size() >= max_size) {
            overflow = true;
            the_queue.pop();
        }
        the_queue.emplace(std::move(val));
        const size_t queue_size = the_queue.size();
        lock.unlock();

        the_rx_notification.notify_one();

        return {overflow, queue_size};
    }


    /* Push one element into the queue, but wait until the
     * queue size goes below the threshold.
     *
     * returns the new queue size.
     */
    size_t push_wait_if_full(T const& val, size_t threshold)
    {
        std::unique_lock<std::mutex> lock(the_mutex);
        while (the_queue.size() >= threshold) {
            the_tx_notification.wait(lock);
        }
        the_queue.push(val);
        size_t queue_size = the_queue.size();
        lock.unlock();

        the_rx_notification.notify_one();

        return queue_size;
    }

    /* Trigger a wakeup event on a blocking consumer, which
     * will receive a ThreadsafeQueueWakeup exception.
     */
    void trigger_wakeup(void)
    {
        std::unique_lock<std::mutex> lock(the_mutex);
        wakeup_requested = true;
        lock.unlock();
        the_rx_notification.notify_one();
    }

    /* Send a notification for the receiver thread */
    void notify(void)
    {
        the_rx_notification.notify_one();
    }

    bool empty() const
    {
        std::unique_lock<std::mutex> lock(the_mutex);
        return the_queue.empty();
    }

    size_t size() const
    {
        std::unique_lock<std::mutex> lock(the_mutex);
        return the_queue.size();
    }

    bool try_pop(T& popped_value)
    {
        std::unique_lock<std::mutex> lock(the_mutex);
        if (the_queue.empty()) {
            return false;
        }

        popped_value = the_queue.front();
        the_queue.pop();

        lock.unlock();
        the_tx_notification.notify_one();

        return true;
    }

    void wait_and_pop(T& popped_value, size_t prebuffering = 1)
    {
        std::unique_lock<std::mutex> lock(the_mutex);
        while (the_queue.size() < prebuffering and
                not wakeup_requested) {
            the_rx_notification.wait(lock);
        }

        if (wakeup_requested) {
            wakeup_requested = false;
            throw ThreadsafeQueueWakeup();
        }
        else {
            std::swap(popped_value, the_queue.front());
            the_queue.pop();

            lock.unlock();
            the_tx_notification.notify_one();
        }
    }

private:
    std::queue<T> the_queue;
    mutable std::mutex the_mutex;
    std::condition_variable the_rx_notification;
    std::condition_variable the_tx_notification;
    bool wakeup_requested = false;
};