/*
Copyright (C) 2014 CSP Innovazione nelle ICT s.c.a r.l. (http://rd.csp.it/)
Copyright (C) 2014 Matthias P. Braendli (http://opendigitalradio.org)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
mot-encoder.c
Generete PAD data for MOT Slideshow and DLS
Authors:
Sergio Sagliocco
Matthias P. Braendli
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "config.h"
#define DEBUG 1
#define SLEEPDELAY_DEFAULT 10 //seconds
extern "C" {
#include "lib_crc.h"
}
#define MIN(a,b) (((a)<(b))?(a):(b))
#define MAX(a,b) (((a)>(b))?(a):(b))
#define XSTR(x) #x
#define STR(x) XSTR(x)
#define MAXSEGLEN 8179
#define MAXDLS 128
#define MAXSLIDESIZE 50000
#define MAXSLIDEID 9999
// Do not allow the image compressor to go below
// JPEG quality 40
#define MINQUALITY 40
struct MSCDG {
// MSC Data Group Header (extension field not supported)
unsigned char extflag; // 1 bit
unsigned char crcflag; // 1 bit
unsigned char segflag; // 1 bit
unsigned char accflag; // 1 bit
unsigned char dgtype; // 4 bits
unsigned char cindex; // 4 bits
unsigned char rindex; // 4 bits
/// Session header - Segment field
unsigned char last; // 1 bit
unsigned short int segnum; // 16 bits
// Session header - User access field
unsigned char rfa; // 3 bits
unsigned char tidflag; // 1 bit
unsigned char lenid; // 4 bits - Fixed to value 2 in this implemntation
unsigned short int tid; // 16 bits
// MSC data group data field
// Mot Segmentation header
unsigned char rcount; // 3 bits
unsigned short int seglen; // 13 bits
// Mot segment
unsigned char* segdata;
// MSC data group CRC
unsigned short int crc; // 16 bits
};
struct slide_metadata_t {
// complete path to slide
std::string filepath;
// index, values from 0 to MAXSLIDEID, rolls over
int fidx;
// This is used to define the order in which several discovered
// slides are transmitted
bool operator<(const slide_metadata_t& other) const {
return this->filepath < other.filepath;
}
};
struct history_t {
// slide footprints
std::vector footprints;
// position marking the last added footprint
unsigned int cursor;
};
/*
typedef struct {
// MOT HEADER CUSTOMIZED FOR SLIDESHOW APP
unsigned int bodysize; // 28 bits
unsigned short int headsize; // 13 bits
unsigned char ctype; // 6 bits
unsigned char sctype; // 9 bits
unsigned char triggertime[5]; // 0x85 0x00 0x00 0x00 0x00 => NOW
unsigned char contname[14]; // 0xCC 0x0C 0x00 imgXXXX.jpg
} MOTSLIDEHDR;
*/
int encodeFile(int output_fd, std::string& fname, int fidx, int padlen, bool file_on_sls);
void createMotHeader(size_t blobsize, int fidx, unsigned char* mothdr, int* mothdrlen);
void createMscDG(MSCDG* msc, unsigned short int dgtype, unsigned short int cindex,
unsigned short int lastseg, unsigned short int tid, unsigned char* data,
unsigned short int datalen);
void packMscDG(unsigned char* mscblob, MSCDG* msc, unsigned short int *bsize);
void writeMotPAD(int output_fd,
unsigned char* mscdg,
unsigned short int mscdgsize,
unsigned short int padlen);
void create_dls_datagroup(char* text, int padlen);
void writeDLS(int output_fd, const char* dls_file, int padlen);
bool find_footprint(const struct history_t & slide_history, const std::string & footprint,
int & fidx);
void add_foorprint(struct history_t & slide_history, const std::string & footprint,
int & fidx, unsigned int max_len_history);
void make_footprint(const char * filepath, std::string & footprint);
int get_xpadlengthmask(int padlen);
#define ALLOWED_PADLEN "23, 26, 34, 42, 58"
// The toggle flag for the DLS
static uint8_t dls_toggle = 0;
// The DLS data groups
std::deque > dlsdg;
static int dlsfd = 0;
static int verbose = 0;
void usage(char* name)
{
fprintf(stderr, "DAB MOT encoder %s for slideshow and DLS\n\n"
"By CSP Innovazione nelle ICT s.c.a r.l. (http://rd.csp.it/) and\n"
"Opendigitalradio.org\n\n"
"Reads image data from the specified directory, DLS text from a file,\n"
"and outputs PAD data to the given FIFO.\n"
" http://opendigitalradio.org\n\n",
#if defined(GITVERSION)
GITVERSION
#else
PACKAGE_VERSION
#endif
);
fprintf(stderr, "Usage: %s [OPTIONS...]\n", name);
fprintf(stderr, " -d, --dir=DIRNAME Directory to read images from.\n"
" -e, --erase Erase slides from DIRNAME once they have\n"
" been encoded.\n"
" -s, --sleep=DELAY Wait DELAY seconds between each slide\n"
" Default: " STR(SLEEPDELAY_DEFAULT) "\n"
" -o, --output=FILENAME Fifo to write PAD data into.\n"
" Default: /tmp/pad.fifo\n"
" -t, --dls=FILENAME Fifo or file to read DLS text from.\n"
" -p, --pad=LENGTH Set the pad length.\n"
" Possible values: " ALLOWED_PADLEN "\n"
" Default: 58\n"
" -f, --file Warning, this is an option used for experimental \n"
" purpose. It allows you to skip all processing \n"
" on the files in the directory specified by option -d \n"
" It is useful only when with -d \n"
" -v, --verbose Print more information to the console\n"
);
}
#define no_argument 0
#define required_argument 1
#define optional_argument 2
int main(int argc, char *argv[])
{
int len, fidx, ret;
struct dirent *pDirent;
DIR *pDir = NULL;
int padlen = 58;
bool erase_after_tx = false;
int sleepdelay = SLEEPDELAY_DEFAULT;
bool file_on_sls = false;
const char* dir = NULL;
const char* output = "/tmp/pad.fifo";
const char* dls_file = NULL;
const struct option longopts[] = {
{"dir", required_argument, 0, 'd'},
{"erase", no_argument, 0, 'e'},
{"output", required_argument, 0, 'o'},
{"dls", required_argument, 0, 't'},
{"pad", required_argument, 0, 'p'},
{"sleep", required_argument, 0, 's'},
{"file", no_argument, 0, 'f'},
{"help", no_argument, 0, 'h'},
{"verbose", no_argument, 0, 'v'},
{0,0,0,0},
};
int ch=0;
int index;
while(ch != -1) {
ch = getopt_long(argc, argv, "fehd:o:s:t:p:v", longopts, &index);
switch (ch) {
case 'd':
dir = optarg;
break;
case 'e':
erase_after_tx = true;
break;
case 'o':
output = optarg;
break;
case 's':
sleepdelay = atoi(optarg);
break;
case 't':
dls_file = optarg;
break;
case 'p':
padlen = atoi(optarg);
break;
case 'f':
file_on_sls = true;
break;
case 'v':
verbose++;
break;
case '?':
case 'h':
usage(argv[0]);
return 0;
}
}
if (get_xpadlengthmask(padlen) == -1) {
fprintf(stderr, "mot-encoder Error: pad length %d invalid: Possible values: "
ALLOWED_PADLEN "\n",
padlen);
return 2;
}
if (dir && dls_file) {
fprintf(stderr, "mot-encoder encoding Slideshow from %s and DLS from %s to %s\n",
dir, dls_file, output);
}
else if (dir) {
fprintf(stderr, "mot-encoder encoding Slideshow from %s to %s. No DLS.\n",
dir, output);
}
else if (dls_file) {
fprintf(stderr, "mot-encoder encoding DLS from %s to %s. No Slideshow.\n",
dls_file, output);
}
else {
fprintf(stderr, "mot-encoder Error: No DLS nor slideshow to encode !\n");
usage(argv[0]);
return 1;
}
int output_fd = open(output, O_WRONLY);
if (output_fd == -1) {
perror("mot-encoder Error: failed to open output");
return 3;
}
MagickWandGenesis();
std::list slides_to_transmit;
struct history_t slide_history;
fidx = 0;
slide_history.cursor = fidx;
while(1) {
if (dir) {
pDir = opendir(dir);
if (pDir == NULL) {
fprintf(stderr, "mot-encoder Error: cannot open directory '%s'\n", dir);
return 1;
}
//
// Add new slides to transmit to list
while ((pDirent = readdir(pDir)) != NULL) {
if (pDirent->d_name[0] != '.') {
char imagepath[256];
sprintf(imagepath, "%s/%s", dir, pDirent->d_name);
std::string footprint;
slide_metadata_t md;
md.filepath = imagepath;
// Management of fidx
make_footprint(imagepath, footprint);
if (!find_footprint(slide_history, footprint, fidx)) {
add_foorprint(slide_history, footprint, fidx, MAXSLIDEID);
}
md.fidx = fidx;
slides_to_transmit.push_back(md);
if (verbose) {
fprintf(stderr, "mot-encoder found slide %s\n", imagepath);
}
fidx++;
}
}
// Sort the list in alphabetic order
slides_to_transmit.sort();
if (dls_file) {
// Maybe we have no slides, always update DLS
writeDLS(output_fd, dls_file, padlen);
sleep(sleepdelay);
}
// Encode the slides
std::list::iterator it;
for (it = slides_to_transmit.begin();
it != slides_to_transmit.end();
++it) {
ret = encodeFile(output_fd, it->filepath, it->fidx, padlen, file_on_sls);
if (ret != 1) {
fprintf(stderr, "mot-encoder Error: cannot encode file %s\n", it->filepath.c_str());
}
if (erase_after_tx) {
if (unlink(it->filepath.c_str()) == -1) {
fprintf(stderr, "mot-encoder Error: erasing file %s failed: ", it->filepath.c_str());
perror("");
}
}
// Always retransmit DLS after each slide, we want it to be updated frequently
if (dls_file) {
writeDLS(output_fd, dls_file, padlen);
}
sleep(sleepdelay);
}
slides_to_transmit.resize(0);
}
else if (dls_file) { // only DLS
// Always retransmit DLS, we want it to be updated frequently
writeDLS(output_fd, dls_file, padlen);
sleep(sleepdelay);
}
if (pDir) {
closedir(pDir);
}
}
return 1;
}
// Resize the image or add a black border around it
// so that it is 320x240 pixels.
// Automatically reduce the quality to make sure the
// blobsize is not too large.
//
// Returns: the blobsize
size_t resizeImage(MagickWand* m_wand, unsigned char** blob)
{
size_t blobsize;
size_t height = MagickGetImageHeight(m_wand);
size_t width = MagickGetImageWidth(m_wand);
PixelWand *p_wand = NULL;
while (height > 240 || width > 320) {
if (height/240.0 > width/320.0) {
width = width * 240.0 / height;
height = 240;
}
else {
height = height * 320.0 / width;
width = 320;
}
MagickResizeImage(m_wand, width, height, LanczosFilter, 1);
}
height = MagickGetImageHeight(m_wand);
width = MagickGetImageWidth(m_wand);
// Make sure smaller images are 320x240 pixels, and
// add a black border
p_wand = NewPixelWand();
PixelSetColor(p_wand, "black");
MagickBorderImage(m_wand, p_wand, (320-width)/2, (240-height)/2);
DestroyPixelWand(p_wand);
MagickSetImageFormat(m_wand, "jpg");
int quality = 100;
do {
quality -= 5;
MagickSetImageCompressionQuality(m_wand, quality);
*blob = MagickGetImagesBlob(m_wand, &blobsize);
} while (blobsize > MAXSLIDESIZE && quality > MINQUALITY);
if (blobsize > MAXSLIDESIZE) {
fprintf(stderr, "mot-encoder: Image Size too large after compression: %zu bytes\n",
blobsize);
return 0;
}
if (verbose) {
fprintf(stderr, "mot-encoder resized image to %zu x %zu. Size after compression %zu bytes (q=%d)\n",
width, height, blobsize, quality);
}
return blobsize;
}
int encodeFile(int output_fd, std::string& fname, int fidx, int padlen, bool file_on_sls)
{
int ret = 0;
int fd=0, mothdrlen, nseg, lastseglen, i, last, curseglen;
unsigned char mothdr[32];
MagickWand *m_wand = NULL;
size_t blobsize, height, width;
unsigned char *blob = NULL;
unsigned char *curseg = NULL;
MagickBooleanType err;
MSCDG msc;
unsigned char mscblob[8200];
unsigned short int mscblobsize;
size_t orig_quality;
char* orig_format = NULL;
/* We handle JPEG differently, because we want to avoid recompressing the
* image if it is suitable as is
*/
bool orig_is_jpeg = false;
/* By default, we do resize the image to 320x240, with a quality such that
* the blobsize is at most MAXSLIDESIZE.
*
* For JPEG input files that are already at the right resolution and at the
* right blobsize, we disable this to avoid quality loss due to recompression
*/
bool resize_required = true;
if (!file_on_sls) {
m_wand = NewMagickWand();
err = MagickReadImage(m_wand, fname.c_str());
if (err == MagickFalse) {
fprintf(stderr, "mot-encoder Error: Unable to load image %s\n",
fname.c_str());
goto encodefile_out;
}
height = MagickGetImageHeight(m_wand);
width = MagickGetImageWidth(m_wand);
orig_format = MagickGetImageFormat(m_wand);
// By default assume that the image has full quality and can be reduced
orig_quality = 100;
if (orig_format) {
if (strcmp(orig_format, "JPEG") == 0) {
orig_quality = MagickGetImageCompressionQuality(m_wand);
orig_is_jpeg = true;
if (verbose) {
fprintf(stderr, "mot-encoder image: %s (id=%d)."
" Original size: %zu x %zu. (%s, q=%zu)\n",
fname.c_str(), fidx, width, height, orig_format, orig_quality);
}
}
else if (verbose) {
fprintf(stderr, "mot-encoder image: %s (id=%d)."
" Original size: %zu x %zu. (%s)\n",
fname.c_str(), fidx, width, height, orig_format);
}
free(orig_format);
}
else {
fprintf(stderr, "mot-encoder Warning: Unable to detect image format %s\n",
fname.c_str());
fprintf(stderr, "mot-encoder image: %s (id=%d). Original size: %zu x %zu.\n",
fname.c_str(), fidx, width, height);
}
if (orig_is_jpeg && height == 240 && width == 320) {
// Don't recompress the image and check if the blobsize is suitable
blob = MagickGetImagesBlob(m_wand, &blobsize);
if (blobsize < MAXSLIDESIZE) {
fprintf(stderr, "mot-encoder image: %s (id=%d). No resize needed: %zu Bytes\n",
fname.c_str(), fidx, blobsize);
resize_required = false;
}
}
if (resize_required) {
blobsize = resizeImage(m_wand, &blob);
}
} else {
// read file
FILE * pFile = fopen (fname.c_str(), "rb" );
if (pFile == NULL) {
fprintf (stderr, "mot-encoder Error: Unable to load file %s\n", fname.c_str());
}
// obtain file size:
fseek (pFile , 0 , SEEK_END);
blobsize = ftell (pFile);
rewind (pFile);
// allocate memory to contain the whole file:
blob = (unsigned char*) malloc (sizeof(char) * blobsize);
if (blob == NULL) {
fprintf (stderr, "mot-encoder Error: Memory allocation error \n");
}
// copy the file into the buffer:
size_t dummy = fread (blob, 1, blobsize, pFile);
if (pFile != NULL) {
fclose (pFile);
}
}
if (blobsize) {
nseg = blobsize / MAXSEGLEN;
lastseglen = blobsize % MAXSEGLEN;
if (lastseglen != 0) {
nseg++;
}
createMotHeader(blobsize, fidx, mothdr, &mothdrlen);
// Create the MSC Data Group C-Structure
createMscDG(&msc, 3, 0, 1, fidx, mothdr, mothdrlen);
// Generate the MSC DG frame (Figure 9 en 300 401)
packMscDG(mscblob, &msc, &mscblobsize);
writeMotPAD(output_fd, mscblob, mscblobsize, padlen);
for (i = 0; i < nseg; i++) {
curseg = blob + i * MAXSEGLEN;
if (i == nseg-1) {
curseglen = lastseglen;
last = 1;
}
else {
curseglen = MAXSEGLEN;
last = 0;
}
createMscDG(&msc, 4, i, last, fidx, curseg, curseglen);
packMscDG(mscblob, &msc, &mscblobsize);
writeMotPAD(output_fd, mscblob, mscblobsize, padlen);
}
ret = 1;
}
encodefile_out:
if (m_wand) {
m_wand = DestroyMagickWand(m_wand);
}
if (blob) {
free(blob);
}
return ret;
}
void createMotHeader(size_t blobsize, int fidx, unsigned char* mothdr, int* mothdrlen)
{
struct stat s;
uint8_t MotHeaderCore[7] = {0x00,0x00,0x00,0x00,0x0D,0x04,0x01};
uint8_t MotHeaderExt[19] = {0x85,0x00,0x00,0x00,0x00,0xcc,0x0c,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
char cntemp[12];
int i;
MotHeaderCore[0] = (blobsize<<4 & 0xFF000000) >> 24;
MotHeaderCore[1] = (blobsize<<4 & 0x00FF0000) >> 16;
MotHeaderCore[2] = (blobsize<<4 & 0x0000FF00) >> 8;
MotHeaderCore[3] = (blobsize<<4 & 0x000000FF);
sprintf(cntemp, "img%04d.jpg", fidx);
for (i = 0; i < strlen(cntemp); i++) {
MotHeaderExt[8+i] = cntemp[i];
}
*mothdrlen = 26;
for (i = 0; i < 7; i++)
mothdr[i] = MotHeaderCore[i];
for (i = 0; i < 19; i++)
mothdr[7+i] = MotHeaderExt[i];
return;
}
void createMscDG(MSCDG* msc, unsigned short int dgtype,
unsigned short int cindex, unsigned short int lastseg,
unsigned short int tid, unsigned char* data,
unsigned short int datalen)
{
msc->extflag = 0;
msc->crcflag = 1;
msc->segflag = 1;
msc->accflag = 1;
msc->dgtype = dgtype;
msc->cindex = cindex;
msc->rindex = 0;
msc->last = lastseg;
msc->segnum = cindex;
msc->rfa = 0;
msc->tidflag = 1;
msc->lenid = 2;
msc->tid = tid;
msc->segdata = data;
msc->rcount = 0;
msc->seglen = datalen;
}
void packMscDG(unsigned char* b, MSCDG* msc, unsigned short int* bsize)
{
int i;
unsigned short int crc=0xFFFF;
b[0] = (msc->extflag<<7) | (msc->crcflag<<6) | (msc->segflag<<5) |
(msc->accflag<<4) | msc->dgtype;
b[1] = (msc->cindex<<4) | msc->rindex;
b[2] = (msc->last<<7) | ((msc->segnum & 0x7F00) >> 8);
b[3] = msc->segnum & 0x00FF;
b[4] = 0;
b[4] = (msc->rfa << 5) | (msc->tidflag << 4) | msc->lenid;
b[5] = (msc->tid & 0xFF00) >> 8;
b[6] = msc->tid & 0x00FF;
b[7] = (msc->rcount << 5) | ((msc->seglen & 0x1F00)>>8);
b[8] = msc->seglen & 0x00FF;
for (i = 0; i<9; i++) {
crc = update_crc_ccitt(crc, b[i]);
}
for(i = 0; i < msc->seglen; i++) {
b[i+9] = (msc->segdata)[i];
crc = update_crc_ccitt(crc, b[i+9]);
}
crc = ~crc;
b[9+msc->seglen] = (crc & 0xFF00) >> 8; // HI CRC
b[9+msc->seglen+1] = crc & 0x00FF; // LO CRC
*bsize = 9 + msc->seglen + 1 + 1;
//write(1,b,9+msc->seglen+1+1);
}
void writeDLS(int output_fd, const char* dls_file, int padlen)
{
char dlstext[MAXDLS];
int dlslen;
int i;
if (dlsfd != 0) {
close(dlsfd);
}
dlsfd = open(dls_file, O_RDONLY);
if (dlsfd == -1) {
fprintf(stderr, "mot-encoder Error: Cannot open dls file\n");
return;
}
dlslen = read(dlsfd, dlstext, MAXDLS);
dlstext[dlslen] = 0x00;
// Remove trailing line breaks from the file
char* endp = dlstext + dlslen;
while ( endp > dlstext &&
(*endp == '\0' || *endp == '\n')) {
if (*endp == '\n') {
*endp == '\0';
}
endp--;
}
if (verbose) {
fprintf(stderr, "mot-encoder writing DLS text \"%s\"\n", dlstext);
}
create_dls_datagroup(dlstext, padlen);
for (i = 0; i < dlsdg.size(); i++) {
size_t dummy = write(output_fd, &dlsdg[i].front(), dlsdg[i].size());
}
}
void create_dls_datagroup(char* text, int padlen)
{
int numdg = 0; // Number of data groups
int numseg; // Number of DSL segments
int lastseglen; // Length of the last segment
int xpadlengthmask;
int i, j, k, z, idx_start_crc, idx_stop_crc;
uint16_t dlscrc;
if (dls_toggle == 0)
dls_toggle = 1;
else
dls_toggle = 0;
numseg = strlen(text) / 16;
lastseglen = strlen(text) % 16;
if (padlen-9 >= 16) {
if (lastseglen > 0) {
numseg++; // The last incomplete segment
}
// The PAD can contain the full segmnet and overhead (9 bytes)
numdg = numseg;
}
else {
// Each 16 char segment span over 2 dg
numdg = numseg * 2;
if (lastseglen > 0) {
numseg++; // The last incomplete segment
if (lastseglen <= padlen-9) {
numdg += 1;
}
else {
numdg += 2;
}
}
}
#if DEBUG
fprintf(stderr, "PAD Length: %d\n", padlen);
fprintf(stderr, "DLS text: %s\n", text);
fprintf(stderr, "Number of DLS segments: %d\n", numseg);
fprintf(stderr, "Number of DLS data groups: %d\n", numdg);
#endif
xpadlengthmask = get_xpadlengthmask(padlen);
dlsdg.resize(0);
dlsdg.resize(numdg);
i = 0;
for (z=0; z < numseg; z++) {
char* curseg;
int curseglen;
uint8_t firstseg, lastseg;
curseg = &text[z * 16];
#if DEBUG
fprintf(stderr, "Segment number %d\n", z+1);
#endif
if (z == 0) { // First segment
firstseg = 1;
}
else {
firstseg = 0;
}
if (z == numseg-1) { //Last segment
if (lastseglen != 0) {
curseglen = lastseglen;
}
else {
curseglen = 16;
}
lastseg = 1;
}
else {
curseglen = 16;
lastseg = 0;
}
if (curseglen <= padlen-9) { // Segment is composed of 1 data group
dlsdg[i].resize(padlen);
// FF-PAD Byte L (CI=1)
dlsdg[i][padlen-1]=0x02;
// FF-PAD Byte L-1 (Variable size X_PAD)
dlsdg[i][padlen-2]=0x20;
// CI => data length = 12 (011) - Application Type=2
// (DLS - start of X-PAD data group)
dlsdg[i][padlen-3]=(xpadlengthmask<<5) | 0x02;
// End of CI list
dlsdg[i][padlen-4]=0x00;
// DLS Prefix (T=1,Only one segment,segment length-1)
dlsdg[i][padlen-5]=((dls_toggle*8+firstseg*4+lastseg*2+0)<<4) |
(curseglen-1);
if (firstseg==1) {
// DLS Prefix (Charset standard)
dlsdg[i][padlen-6]=0x00;
}
else {
// DLS SegNum
dlsdg[i][padlen-6]=z<<4;
}
// CRC start from prefix
idx_start_crc = padlen-5;
// DLS text
for (j = 0; j < curseglen; j++) {
dlsdg[i][padlen-7-j] = curseg[j];
}
idx_stop_crc = padlen - 7 - curseglen+1;
dlscrc = 0xffff;
for (j = idx_start_crc; j >= idx_stop_crc; j--) {
dlscrc = update_crc_ccitt(dlscrc, dlsdg[i][j]);
}
dlscrc = ~dlscrc;
#if DEBUG
fprintf(stderr, "crc=%x ~crc=%x\n", ~dlscrc, dlscrc);
#endif
dlsdg[i][padlen-7-curseglen] = (dlscrc & 0xFF00) >> 8; // HI CRC
dlsdg[i][padlen-7-curseglen-1] = dlscrc & 0x00FF; // LO CRC
// NULL PADDING
for (j = padlen-7-curseglen-2; j >= 0; j--) {
dlsdg[i][j]=0x00;
}
#if DEBUG
fprintf(stderr, "Data group: ");
for (j = 0; j < padlen; j++)
fprintf(stderr, "%x ", dlsdg[i][j]);
fprintf(stderr, "\n");
#endif
i++;
}
else { // Segment is composed of 2 data groups
// FIRST DG (NO CRC)
dlscrc = 0xffff;
dlsdg[i].resize(padlen);
// FF-PAD Byte L (CI=1)
dlsdg[i][padlen-1]=0x02;
// FF-PAD Byte L-1 (Variable size X_PAD)
dlsdg[i][padlen-2]=0x20;
// CI => data length = 12 (011) - Application Type=2
// (DLS - start of X-PAD data group)
dlsdg[i][padlen-3]=(xpadlengthmask<<5) | 0x02;
// End of CI list
dlsdg[i][padlen-4]=0x00;
// DLS Prefix (T=1,Only one segment,segment length-1)
dlsdg[i][padlen-5]=((dls_toggle*8+firstseg*4+lastseg*2+0)<<4) |
(curseglen-1);
if (firstseg == 1) {
// DLS Prefix (Charset standard)
dlsdg[i][padlen-6] = 0x00;
}
else {
// DLS SegNum
dlsdg[i][padlen-6]=(i-1)<<4;
}
dlscrc = update_crc_ccitt(dlscrc, dlsdg[i][padlen-5]);
dlscrc = update_crc_ccitt(dlscrc, dlsdg[i][padlen-6]);
// DLS text
for (j=0; j < MIN(curseglen, padlen-7); j++) {
dlsdg[i][padlen-7-j] = curseg[j];
dlscrc = update_crc_ccitt(dlscrc, dlsdg[i][padlen-7-j]);
}
k = j;
// end of segment
if (curseglen == padlen-8) {
dlscrc = ~dlscrc;
dlsdg[i][1] = (dlscrc & 0xFF00) >> 8; // HI CRC
}
else if (curseglen == padlen-7) {
dlscrc = ~dlscrc;
}
dlsdg[i][0]=0x00;
#if DEBUG
fprintf(stderr, "crc=%x ~crc=%x\n", ~dlscrc, dlscrc);
fprintf(stderr, "First Data group: ");
for (j = 0; j < padlen; j++) {
fprintf(stderr, "%x ", dlsdg[i][j]);
}
fprintf(stderr,"\n");
#endif
// SECOND DG (NO CI, NO PREFIX)
i++;
dlsdg[i].resize(padlen);
// FF-PAD Byte L (CI=0)
dlsdg[i][padlen-1] = 0x00;
// FF-PAD Byte L-1 (Variable size X_PAD)
dlsdg[i][padlen-2] = 0x20;
if (curseglen == padlen-8) {
dlsdg[i][padlen-3] = dlscrc & 0x00FF; // LO CRC
}
else if (curseglen==padlen-7) {
dlsdg[i][padlen-3] = (dlscrc & 0xFF00) >> 8; // HI CRC
dlsdg[i][padlen-4] = dlscrc & 0x00FF; // LO CRC
}
else {
// DLS text
for (j = 0; j < curseglen-k; j++) {
dlsdg[i][padlen-3-j] = curseg[k+j];
dlscrc = update_crc_ccitt(dlscrc, dlsdg[i][padlen-3-j]);
}
dlscrc = ~dlscrc;
dlsdg[i][padlen-3-curseglen+k] = (dlscrc & 0xFF00) >> 8; // HI CRC
dlsdg[i][padlen-3-curseglen+k-1] = dlscrc & 0x00FF; // LO CRC
}
#if DEBUG
fprintf(stderr, "Second Data group: ");
for (j = 0; j < padlen; j++) {
fprintf(stderr, "%x ", dlsdg[i][j]);
}
fprintf(stderr, "\n");
fprintf(stderr, "**** crc=%x ~crc=%x\n", ~dlscrc, dlscrc);
#endif
i++;
}
}
}
void writeMotPAD(int output_fd,
unsigned char* mscdg,
unsigned short int mscdgsize,
unsigned short int padlen)
{
unsigned char pad[128];
int xpadlengthmask, i, j, k;
unsigned short int crc;
xpadlengthmask = get_xpadlengthmask(padlen);
// Write MSC Data Groups
int curseglen, non_ci_seglen;
for (i = 0; i < mscdgsize; i += curseglen) {
uint8_t* curseg;
uint8_t firstseg;
curseg = &mscdg[i];
#if DEBUG
fprintf(stderr,"Segment offset %d\n",i);
#endif
if (i == 0) { // First segment
firstseg = 1;
curseglen = padlen-10;
// size of first X-PAD = MSC-DG + DGLI-DG + End of CI list + 2x CI = size of subsequent non-CI X-PADs
non_ci_seglen = curseglen + 4 + 1 + 2;
}
else {
firstseg = 0;
curseglen = MIN(non_ci_seglen,mscdgsize-i);
}
if (firstseg == 1) {
// FF-PAD Byte L (CI=1)
pad[padlen-1] = 0x02;
// FF-PAD Byte L-1 (Variable size X_PAD)
pad[padlen-2] = 0x20;
// Write Data Group Length Indicator
crc = 0xffff;
// CI for data group length indicator: data length=4, Application Type=1
pad[padlen-3]=0x01;
// CI for data group length indicator: Application Type=12 (Start of MOT)
pad[padlen-4]=(xpadlengthmask<<5) | 12;
// End of CI list
pad[padlen-5]=0x00;
// RFA+HI Data group length
pad[padlen-6]=(mscdgsize & 0x3F00)>>8;
pad[padlen-7]=(mscdgsize & 0x00FF);
crc = update_crc_ccitt(crc, pad[padlen-6]);
crc = update_crc_ccitt(crc, pad[padlen-7]);
crc = ~crc;
// HI CRC
pad[padlen-8]=(crc & 0xFF00) >> 8;
// LO CRC
pad[padlen-9]=(crc & 0x00FF);
k=10;
}
else {
// FF-PAD Byte L (CI=0)
pad[padlen-1] = 0x00;
// FF-PAD Byte L-1 (Variable size X_PAD)
pad[padlen-2] = 0x20;
k=3;
}
for (j = 0; j < curseglen; j++) {
pad[padlen-k-j] = curseg[j];
}
for (j = padlen-k-curseglen; j >= 0; j--) {
pad[j] = 0x00;
}
size_t dummy = write(output_fd, pad, padlen);
#if DEBUG
fprintf(stderr,"MSC Data Group - Segment %d: ",i);
for (j=0;j max_len_history) {
slide_history.footprints[slide_history.cursor] = footprint;
}
else {
slide_history.footprints.push_back(footprint);
}
fidx = (int) slide_history.cursor;
// update cursor
slide_history.cursor = (slide_history.cursor == max_len_history) ? 0 : slide_history.cursor + 1;
}
void make_footprint(const char * filepath, std::string & footprint) {
char footprint_str[256];
int len_path = strlen(filepath);
struct stat attrib;
int cursor;
int cursor2;
// get filename
for (cursor = len_path - 1;
cursor >= 0;
cursor--) {
if (filepath[cursor] == '/') {
break;
}
}
cursor2 = 0;
for (cursor++; cursor < len_path; cursor++) {
footprint_str[cursor2] = filepath[cursor];
cursor2++;
}
footprint_str[cursor2]='\0';
// footprint = filename + size + last modification time
stat(filepath, &attrib);
sprintf(footprint_str, "%s_%d_%d", footprint_str, (int)attrib.st_size, (int)attrib.st_mtime);
footprint.assign(footprint_str);
}