/* ------------------------------------------------------------------ * Copyright (C) 2011 Martin Storsjo * Copyright (C) 2016 Matthias P. Braendli * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either * express or implied. * See the License for the specific language governing permissions * and limitations under the License. * ------------------------------------------------------------------- */ /*! \mainpage Introduction * The ODR-mmbTools FDK-AAC-DABplus Audio encoder can encode audio for * ODR-DabMux, both DAB and DAB+. The DAB encoder is based on toolame. The * DAB+ encoder uses a modified library of the Fraunhofer FDK AAC code from * Android, patched for 960-transform to do DAB+ broadcast encoding. * * This document describes some internals of the encoder, and is intended * to help developers understand and improve the software package. * * User documentation is available in the README and in the ODR-mmbTools * Guide, available on the www.opendigitalradio.org website. * * The readme for the whole package is \ref md_README * * Interesting starting points for the encoder * - \ref dabplus-enc.cpp Main encoder file * - \ref VLCInput.h VLC Input * - \ref AlsaInput.h Alsa Input * - \ref JackInput.h JACK Input * - \ref SampleQueue.h * - \ref charset.h Charset conversion * - \ref toolame.h libtolame API * - \ref AudioLevel * - \ref DataInput * - \ref SilenceDetection * * For the mot-encoder: * - \ref mot-encoder.cpp * * * \file dabplus-enc.cpp * \brief The main file for the audio encoder */ #include "config.h" #include "AlsaInput.h" #include "FileInput.h" #include "JackInput.h" #include "VLCInput.h" #include "SampleQueue.h" #include "zmq.hpp" #include "common.h" extern "C" { #include "encryption.h" #include "utils.h" #include "wavreader.h" } #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "libAACenc/include/aacenc_lib.h" extern "C" { #include #include "libtoolame-dab/toolame.h" } //! Enumeration of encoders we can use enum class encoder_selection_t { fdk_dabplus, toolame_dab }; using namespace std; void usage(const char* name) { fprintf(stderr, "dabplus-enc %s is an audio encoder for both DAB and DAB+.\n" "The DAB+ HE-AACv2 encoder is based on a Thirt-Party Modified\n" "Version of the Fraunhofer FDK AAC Codec Library for Android,\n" "and the DAB encoder is using the tooLAME MPEG\n" "encoder sources. The encoder can read from JACK, ALSA or\n" "a file source and encode to a ZeroMQ output for ODR-DabMux.\n" "(Experimental!)It can also use libvlc as an input.\n" "\n" "The -D option enables experimental sound card clock drift compensation.\n" "A consumer sound card has a clock that is always a bit imprecise, and\n" "would drift off after some time. ODR-DabMux cannot handle such drift\n" "because it would have to throw away or insert a full DAB+ superframe,\n" "which would create audible artifacts. This drift compensation can\n" "make sure that the encoding rate is correct by inserting or deleting\n" "audio samples. It can be used for both ALSA and VLC inputs.\n" "\n" "When this option is enabled, you will see U and O printed in the\n" "console. These correspond to audio underruns and overruns caused\n" "by sound card clock drift. When sparse, they should not create audible\n" "artifacts.\n" "\n" "This encoder includes PAD (DLS and MOT Slideshow) support by\n" "http://rd.csp.it to be used with mot-encoder\n" "\nUsage:\n" "%s [INPUT SELECTION] [OPTION...]\n", #if defined(GITVERSION) GITVERSION #else PACKAGE_VERSION #endif , name); fprintf(stderr, " For the alsa input:\n" #if HAVE_ALSA " -d, --device=alsa_device Set ALSA input device (default: \"default\").\n" #else " The Alsa input was disabled at compile time\n" #endif " For the file input:\n" " -i, --input=FILENAME Input filename (default: stdin).\n" " -f, --format={ wav, raw } Set input file format (default: wav).\n" " --fifo-silence Input file is fifo and encoder generates silence when fifo is empty. Ignore EOF.\n" " For the JACK input:\n" #if HAVE_JACK " -j, --jack=name Enable JACK input, and define our name\n" #else " The JACK input was disabled at compile-time\n" #endif " For the VLC input:\n" #if HAVE_VLC " -v, --vlc-uri=uri Enable VLC input and use the URI given as source\n" " -C, --vlc-cache=ms Specify VLC network cache length.\n" " -g, --vlc-gain=db Enable VLC audio compressor, with given compressor-makeup value.\n" " Use this as a workaround to correct the gain for streams that are\n" " much too loud.\n" " -V Increase the VLC verbosity by one (can be given \n" " multiple times)\n" " -L OPTION Give an additional options to VLC (can be given\n" " multiple times)\n" " -w, --write-icy-text=filename Write the ICY Text into the file, so that mot-encoder can read it.\n" " -W, --write-icy-text-dl-plus When writing the ICY Text into the file, add DL Plus information.\n" #else " The VLC input was disabled at compile-time\n" #endif " Drift compensation\n" " -D, --drift-comp Enable ALSA/VLC sound card drift compensation.\n" " Encoder parameters:\n" " -b, --bitrate={ 8, 16, ..., 192 } Output bitrate in kbps. Must be a multiple of 8.\n" " -c, --channels={ 1, 2 } Nb of input channels (default: 2).\n" " -r, --rate={ 32000, 48000 } Input sample rate (default: 48000).\n" " DAB specific options\n" " -a, --dab Encode in DAB and not in DAB+.\n" " --dabmode=MODE Channel mode: s/d/j/m\n" " (default: j if stereo, m if mono).\n" " --dabpsy=PSY Psychoacoustic model 0/1/2/3\n" " (default: 1).\n" " DAB+ specific options\n" " -A, --no-afterburner Disable AAC encoder quality increaser.\n" " --aaclc Force the usage of AAC-LC (no SBR, no PS)\n" " --sbr Force the usage of SBR\n" " --ps Force the usage of PS\n" " Output and pad parameters:\n" " -o, --output=URI Output ZMQ uri. (e.g. 'tcp://localhost:9000')\n" " -or- Output file uri. (e.g. 'file.dabp')\n" " -or- a single dash '-' to denote stdout\n" " If more than one ZMQ output is given, the socket\n" " will be connected to all listed endpoints.\n" " -k, --secret-key=FILE Enable ZMQ encryption with the given secret key.\n" " -p, --pad=BYTES Set PAD size in bytes.\n" " -P, --pad-fifo=FILENAME Set PAD data input fifo name" " (default: /tmp/pad.fifo).\n" " -l, --level Show peak audio level indication.\n" " -s, --silence=TIMEOUT Abort encoding after TIMEOUT seconds of silence.\n" "\n" "Only the tcp:// zeromq transport has been tested until now,\n" " but epgm:// and pgm:// are also accepted\n" ); } /*! Setup the FDK AAC encoder * * \return 0 on success */ int prepare_aac_encoder( HANDLE_AACENCODER *encoder, int subchannel_index, int channels, int sample_rate, int afterburner, int *aot) { CHANNEL_MODE mode; switch (channels) { case 1: mode = MODE_1; break; case 2: mode = MODE_2; break; default: fprintf(stderr, "Unsupported channels number %d\n", channels); return 1; } if (aacEncOpen(encoder, 0x01|0x02|0x04, channels) != AACENC_OK) { fprintf(stderr, "Unable to open encoder\n"); return 1; } if (*aot == AOT_NONE) { if(channels == 2 && subchannel_index <= 6) { *aot = AOT_DABPLUS_PS; } else if((channels == 1 && subchannel_index <= 8) || subchannel_index <= 10) { *aot = AOT_DABPLUS_SBR; } else { *aot = AOT_DABPLUS_AAC_LC; } } fprintf(stderr, "Using %d subchannels. AAC type: %s%s%s. channels=%d, sample_rate=%d\n", subchannel_index, *aot == AOT_DABPLUS_PS ? "HE-AAC v2" : "", *aot == AOT_DABPLUS_SBR ? "HE-AAC" : "", *aot == AOT_DABPLUS_AAC_LC ? "AAC-LC" : "", channels, sample_rate); if (aacEncoder_SetParam(*encoder, AACENC_AOT, *aot) != AACENC_OK) { fprintf(stderr, "Unable to set the AOT\n"); return 1; } if (aacEncoder_SetParam(*encoder, AACENC_SAMPLERATE, sample_rate) != AACENC_OK) { fprintf(stderr, "Unable to set the sample rate\n"); return 1; } if (aacEncoder_SetParam(*encoder, AACENC_CHANNELMODE, mode) != AACENC_OK) { fprintf(stderr, "Unable to set the channel mode\n"); return 1; } if (aacEncoder_SetParam(*encoder, AACENC_CHANNELORDER, 1) != AACENC_OK) { fprintf(stderr, "Unable to set the wav channel order\n"); return 1; } if (aacEncoder_SetParam(*encoder, AACENC_GRANULE_LENGTH, 960) != AACENC_OK) { fprintf(stderr, "Unable to set the granule length\n"); return 1; } if (aacEncoder_SetParam(*encoder, AACENC_TRANSMUX, TT_DABPLUS) != AACENC_OK) { fprintf(stderr, "Unable to set the RAW transmux\n"); return 1; } /*if (aacEncoder_SetParam(*encoder, AACENC_BITRATEMODE, AACENC_BR_MODE_SFR) * != AACENC_OK) { fprintf(stderr, "Unable to set the bitrate mode\n"); return 1; }*/ fprintf(stderr, "AAC bitrate set to: %d\n", subchannel_index*8000); if (aacEncoder_SetParam(*encoder, AACENC_BITRATE, subchannel_index*8000) != AACENC_OK) { fprintf(stderr, "Unable to set the bitrate\n"); return 1; } if (aacEncoder_SetParam(*encoder, AACENC_AFTERBURNER, afterburner) != AACENC_OK) { fprintf(stderr, "Unable to set the afterburner mode\n"); return 1; } if (!afterburner) { fprintf(stderr, "Warning: Afterburned disabled!\n"); } if (aacEncEncode(*encoder, NULL, NULL, NULL, NULL) != AACENC_OK) { fprintf(stderr, "Unable to initialize the encoder\n"); return 1; } return 0; } chrono::steady_clock::time_point timepoint_last_compensation; /*! Wait the proper amount of time to throttle down to nominal encoding * rate, if drift compensation is enabled. */ void drift_compensation_delay(int sample_rate, int channels, size_t bytes) { const size_t bytes_per_second = sample_rate * BYTES_PER_SAMPLE * channels; size_t bytes_compensate = bytes; const auto wait_time = std::chrono::milliseconds(1000ul * bytes_compensate / bytes_per_second); assert(1000ul * bytes_compensate % bytes_per_second == 0); const auto curTime = std::chrono::steady_clock::now(); const auto diff = curTime - timepoint_last_compensation; if (diff < wait_time) { auto waiting = wait_time - diff; std::this_thread::sleep_for(waiting); } timepoint_last_compensation += wait_time; } #define no_argument 0 #define required_argument 1 #define optional_argument 2 #define STATUS_PAD_INSERTED 0x1 #define STATUS_OVERRUN 0x2 #define STATUS_UNDERRUN 0x4 int main(int argc, char *argv[]) { int bitrate = 0; // 0 is default int ch=0; encoder_selection_t selected_encoder = encoder_selection_t::fdk_dabplus; // For the ALSA input const char *alsa_device = NULL; // For the file input const char *infile = NULL; int raw_input = 0; // For the VLC input std::string vlc_uri = ""; std::string vlc_icytext_file = ""; bool vlc_icytext_dlplus = false; std::string vlc_gain = ""; std::string vlc_cache = ""; std::vector vlc_additional_opts; unsigned verbosity = 0; // For the file output FILE *out_fh = NULL; const char *jack_name = NULL; std::vector output_uris; int sample_rate=48000, channels=2; void *rs_handler = NULL; bool afterburner = true; bool inFifoSilence = false; bool drift_compensation = false; AACENC_InfoStruct info = { 0 }; int aot = AOT_NONE; char dab_channel_mode = '\0'; int dab_psy_model = 1; std::deque toolame_output_buffer; /* Keep track of peaks */ int peak_left = 0; int peak_right = 0; /* On silence, die after the silence_timeout expires */ bool die_on_silence = false; int silence_timeout = 0; int measured_silence_ms = 0; /* For MOT Slideshow and DLS insertion */ const char* pad_fifo = "/tmp/pad.fifo"; int pad_fd; int padlen = 0; /* Encoder status, see the above STATUS macros */ int status = 0; /* Whether to show the 'sox'-like measurement */ int show_level = 0; /* Data for ZMQ CURVE authentication */ char* keyfile = NULL; char secretkey[CURVE_KEYLEN+1]; const struct option longopts[] = { {"bitrate", required_argument, 0, 'b'}, {"channels", required_argument, 0, 'c'}, {"dabmode", required_argument, 0, 4 }, {"dabpsy", required_argument, 0, 5 }, {"device", required_argument, 0, 'd'}, {"format", required_argument, 0, 'f'}, {"input", required_argument, 0, 'i'}, {"jack", required_argument, 0, 'j'}, {"output", required_argument, 0, 'o'}, {"pad", required_argument, 0, 'p'}, {"pad-fifo", required_argument, 0, 'P'}, {"rate", required_argument, 0, 'r'}, {"secret-key", required_argument, 0, 'k'}, {"silence", required_argument, 0, 's'}, {"vlc-cache", required_argument, 0, 'C'}, {"vlc-gain", required_argument, 0, 'g'}, {"vlc-uri", required_argument, 0, 'v'}, {"vlc-opt", required_argument, 0, 'L'}, {"write-icy-text", required_argument, 0, 'w'}, {"write-icy-text-dl-plus", no_argument, 0, 'W'}, {"aaclc", no_argument, 0, 0 }, {"dab", no_argument, 0, 'a'}, {"drift-comp", no_argument, 0, 'D'}, {"fifo-silence", no_argument, 0, 3 }, {"help", no_argument, 0, 'h'}, {"level", no_argument, 0, 'l'}, {"no-afterburner", no_argument, 0, 'A'}, {"ps", no_argument, 0, 2 }, {"sbr", no_argument, 0, 1 }, {"verbosity", no_argument, 0, 'V'}, {0, 0, 0, 0}, }; fprintf(stderr, "Welcome to %s %s, compiled at %s, %s", PACKAGE_NAME, #if defined(GITVERSION) GITVERSION, #else PACKAGE_VERSION, #endif __DATE__, __TIME__); fprintf(stderr, "\n"); fprintf(stderr, " http://opendigitalradio.org\n\n"); if (argc < 2) { usage(argv[0]); return 1; } int index; while(ch != -1) { ch = getopt_long(argc, argv, "aAhDlVb:c:f:i:j:k:L:o:r:d:p:P:s:v:w:Wg:C:", longopts, &index); switch (ch) { case 0: // AAC-LC aot = AOT_DABPLUS_AAC_LC; break; case 1: // SBR aot = AOT_DABPLUS_SBR; break; case 2: // PS aot = AOT_DABPLUS_PS; break; case 3: // FIFO SILENCE case 4: // DAB channel mode dab_channel_mode = optarg[0]; break; case 5: // DAB psy model dab_psy_model = atoi(optarg); break; case 'a': selected_encoder = encoder_selection_t::toolame_dab; break; case 'A': afterburner = false; break; case 'b': bitrate = atoi(optarg); break; case 'c': channels = atoi(optarg); break; case 'd': alsa_device = optarg; break; case 'D': drift_compensation = true; break; case 'f': if(strcmp(optarg, "raw")==0) { raw_input = 1; } else if(strcmp(optarg, "wav")!=0) usage(argv[0]); break; case 'i': infile = optarg; break; case 'j': #if HAVE_JACK jack_name = optarg; #else fprintf(stderr, "JACK disabled at compile time!\n"); return 1; #endif break; case 'k': keyfile = optarg; break; case 'l': show_level = 1; break; case 'o': output_uris.push_back(optarg); break; case 'p': padlen = atoi(optarg); break; case 'P': pad_fifo = optarg; break; case 'r': sample_rate = atoi(optarg); break; case 's': silence_timeout = atoi(optarg); if (silence_timeout > 0 && silence_timeout < 3600*24*30) { die_on_silence = true; } else { fprintf(stderr, "Invalid silence timeout (%d) given!\n", silence_timeout); return 1; } break; #ifdef HAVE_VLC case 'v': vlc_uri = optarg; break; case 'w': vlc_icytext_file = optarg; break; case 'W': vlc_icytext_dlplus = true; break; case 'g': vlc_gain = optarg; break; case 'C': vlc_cache = optarg; break; case 'L': vlc_additional_opts.push_back(optarg); break; #else case 'v': case 'w': fprintf(stderr, "VLC input not enabled at compile time!\n"); return 1; #endif case 'V': verbosity++; break; case '?': case 'h': usage(argv[0]); return 1; } } int num_inputs = 0; if (alsa_device) num_inputs++; if (infile) num_inputs++; if (jack_name) num_inputs++; if (vlc_uri != "") num_inputs++; if (num_inputs > 1) { fprintf(stderr, "You must define only one possible input, not several!\n"); return 1; } if (selected_encoder == encoder_selection_t::fdk_dabplus) { if (bitrate == 0) { bitrate = 64; } int subchannel_index = bitrate / 8; if (subchannel_index < 1 || subchannel_index > 24) { fprintf(stderr, "Bad subchannel index: %d, must be between 1 and 24. Try other bitrate.\n", subchannel_index); return 1; } if ( ! (sample_rate == 32000 || sample_rate == 48000)) { fprintf(stderr, "Invalid sample rate. Possible values are: 32000, 48000.\n"); return 1; } } else if (selected_encoder == encoder_selection_t::toolame_dab) { if (bitrate == 0) { bitrate = 192; } if ( ! (sample_rate == 24000 || sample_rate == 48000)) { fprintf(stderr, "Invalid sample rate. Possible values are: 24000, 48000.\n"); return 1; } } if (padlen < 0) { fprintf(stderr, "Invalid PAD length specified\n"); return 1; } zmq::context_t zmq_ctx; zmq::socket_t zmq_sock(zmq_ctx, ZMQ_PUB); if (not output_uris.empty()) { for (auto uri : output_uris) { if (uri == "-") { if (out_fh != NULL) { fprintf(stderr, "You can't write to more than one file!\n"); return 1; } out_fh = stdout; } else if ((uri.compare(0, 6, "tcp://") == 0) || (uri.compare(0, 6, "pgm://") == 0) || (uri.compare(0, 7, "epgm://") == 0)) { if (keyfile) { fprintf(stderr, "Enabling encryption\n"); int rc = readkey(keyfile, secretkey); if (rc) { fprintf(stderr, "Error reading secret key\n"); return 2; } const int yes = 1; zmq_sock.setsockopt(ZMQ_CURVE_SERVER, &yes, sizeof(yes)); zmq_sock.setsockopt(ZMQ_CURVE_SECRETKEY, secretkey, CURVE_KEYLEN); } zmq_sock.connect(uri.c_str()); } else { // We assume it's a file name if (out_fh != NULL) { fprintf(stderr, "You can't write to more than one file!\n"); return 1; } out_fh = fopen(uri.c_str(), "wb"); if (!out_fh) { fprintf(stderr, "Can't open output file!\n"); return 1; } } } } else { fprintf(stderr, "No output URI defined\n"); return 1; } if (padlen != 0) { int flags; if (mkfifo(pad_fifo, S_IWUSR | S_IRUSR | S_IRGRP | S_IROTH) != 0) { if (errno != EEXIST) { fprintf(stderr, "Can't create pad file: %d!\n", errno); return 1; } } pad_fd = open(pad_fifo, O_RDONLY | O_NONBLOCK); if (pad_fd == -1) { fprintf(stderr, "Can't open pad file!\n"); return 1; } flags = fcntl(pad_fd, F_GETFL, 0); if (fcntl(pad_fd, F_SETFL, flags | O_NONBLOCK)) { fprintf(stderr, "Can't set non-blocking mode in pad file!\n"); return 1; } } std::vector input_buf; HANDLE_AACENCODER encoder; if (selected_encoder == encoder_selection_t::fdk_dabplus) { int subchannel_index = bitrate / 8; if (prepare_aac_encoder(&encoder, subchannel_index, channels, sample_rate, afterburner, &aot) != 0) { fprintf(stderr, "Encoder preparation failed\n"); return 1; } if (aacEncInfo(encoder, &info) != AACENC_OK) { fprintf(stderr, "Unable to get the encoder info\n"); return 1; } // Each DAB+ frame will need input_size audio bytes const int input_size = channels * BYTES_PER_SAMPLE * info.frameLength; fprintf(stderr, "DAB+ Encoding: framelen=%d (%dB)\n", info.frameLength, input_size); input_buf.resize(input_size); } else if (selected_encoder == encoder_selection_t::toolame_dab) { int err = toolame_init(); if (err == 0) { err = toolame_set_samplerate(sample_rate); } if (err == 0) { err = toolame_set_bitrate(bitrate); } if (err == 0) { err = toolame_set_psy_model(dab_psy_model); } if (dab_channel_mode == '\0') { if (channels == 2) { dab_channel_mode = 'j'; // Default to joint-stereo } else if (channels == 1) { dab_channel_mode = 'm'; // Default to mono } else { fprintf(stderr, "Unsupported channels number %d\n", channels); return 1; } } if (err == 0) { err = toolame_set_channel_mode(dab_channel_mode); } if (err == 0) { err = toolame_set_pad(padlen); } if (err) { fprintf(stderr, "libtoolame-dab init failed: %d\n", err); return err; } input_buf.resize(channels * 1152 * BYTES_PER_SAMPLE); } /* We assume that we need to call the encoder * enc_calls_per_output before it gives us one encoded audio * frame. This information is used when the alsa drift compensation * is active. This is only valid for FDK-AAC. */ const int enc_calls_per_output = (aot == AOT_DABPLUS_AAC_LC) ? sample_rate / 8000 : sample_rate / 16000; int max_size = 8*input_buf.size() + NUM_SAMPLES_PER_CALL; /*! The SampleQueue \c queue is given to the inputs, so that they * can fill it. */ SampleQueue queue(BYTES_PER_SAMPLE, channels, max_size); /* symsize=8, gfpoly=0x11d, fcr=0, prim=1, nroots=10, pad=135 */ rs_handler = init_rs_char(8, 0x11d, 0, 1, 10, 135); if (rs_handler == NULL) { perror("init_rs_char failed"); return 1; } /* No input defined ? default to alsa "default" */ if (!alsa_device) { alsa_device = "default"; } // We'll use one of the tree possible inputs #if HAVE_ALSA AlsaInputThreaded alsa_in_threaded(alsa_device, channels, sample_rate, queue); AlsaInputDirect alsa_in_direct(alsa_device, channels, sample_rate); #endif FileInput file_in(infile, raw_input, sample_rate); #if HAVE_JACK JackInput jack_in(jack_name, channels, sample_rate, queue); #endif #if HAVE_VLC VLCInput vlc_input(vlc_uri, sample_rate, channels, verbosity, vlc_gain, vlc_cache, vlc_additional_opts, queue); #endif if (infile) { if (file_in.prepare() != 0) { fprintf(stderr, "File input preparation failed\n"); return 1; } } #if HAVE_JACK else if (jack_name) { if (jack_in.prepare() != 0) { fprintf(stderr, "JACK preparation failed\n"); return 1; } } #endif #if HAVE_VLC else if (vlc_uri != "") { if (vlc_input.prepare() != 0) { fprintf(stderr, "VLC with drift compensation: preparation failed\n"); return 1; } fprintf(stderr, "Start VLC thread\n"); vlc_input.start(); } #endif #if HAVE_ALSA else if (drift_compensation) { if (alsa_in_threaded.prepare() != 0) { fprintf(stderr, "Alsa with drift compensation: preparation failed\n"); return 1; } fprintf(stderr, "Start ALSA capture thread\n"); alsa_in_threaded.start(); } else { if (alsa_in_direct.prepare() != 0) { fprintf(stderr, "Alsa preparation failed\n"); return 1; } } #else else { fprintf(stderr, "No input defined\n"); return 1; } #endif int outbuf_size; std::vector zmqframebuf; std::vector outbuf; if (selected_encoder == encoder_selection_t::fdk_dabplus) { outbuf_size = bitrate/8*120; outbuf.resize(24*120); zmqframebuf.resize(ZMQ_HEADER_SIZE + 24*120); if(outbuf_size % 5 != 0) { fprintf(stderr, "Warning: (outbuf_size mod 5) = %d\n", outbuf_size % 5); } } else if (selected_encoder == encoder_selection_t::toolame_dab) { outbuf_size = 4092; outbuf.resize(outbuf_size); fprintf(stderr, "Setting outbuf size to %zu\n", outbuf.size()); // ODR-DabMux expects frames of length 3*bitrate zmqframebuf.resize(ZMQ_HEADER_SIZE + 3 * bitrate); } zmq_frame_header_t *zmq_frame_header = (zmq_frame_header_t*)&zmqframebuf[0]; unsigned char pad_buf[padlen + 1]; fprintf(stderr, "Starting encoding\n"); int retval = 0; int send_error_count = 0; timepoint_last_compensation = chrono::steady_clock::now(); int calls = 0; // for checking ssize_t read_bytes = 0; do { AACENC_BufDesc in_buf = { 0 }, out_buf = { 0 }; // --------------- Read data from the PAD fifo int ret; if (padlen != 0) { ret = read(pad_fd, pad_buf, padlen + 1); } else { ret = 0; } if(ret < 0 && errno == EAGAIN) { // If this condition passes, there is no data to be read in_buf.numBufs = 1; // Samples; } else if(ret >= 0) { // Otherwise, you're good to go and buffer should contain "count" bytes. in_buf.numBufs = 2; // Samples + Data; if (ret > 0) status |= STATUS_PAD_INSERTED; } else { // Some other error occurred during read. fprintf(stderr, "Unable to read from PAD!\n"); break; } // -------------- Read Data memset(&outbuf[0], 0x00, outbuf_size); memset(&input_buf[0], 0x00, input_buf.size()); /*! \section DataInput * We read data input either in a blocking way (file input, VLC or ALSA * without drift compensation) or in a non-blocking way (VLC or ALSA * with drift compensation, JACK). * * The file input doesn't need the queue at all. But the other inputs * do, and either use \c pop() or \c pop_wait() depending on if it's blocking or not * * In non-blocking, the \c queue makes the data available without delay, and the * \c drift_compensation_delay() function handles rate throttling. */ if (infile) { read_bytes = file_in.read(&input_buf[0], input_buf.size()); if (read_bytes < 0) { break; } else if (read_bytes != input_buf.size()) { if (inFifoSilence && file_in.eof()) { memset(&input_buf[0], 0, input_buf.size()); read_bytes = input_buf.size(); usleep((long)input_buf.size() * 1000000 / (BYTES_PER_SAMPLE * channels * sample_rate)); } else { fprintf(stderr, "Short file read !\n"); read_bytes = 0; } } } #if HAVE_VLC else if (not vlc_uri.empty()) { if (drift_compensation && vlc_input.fault_detected()) { fprintf(stderr, "Detected fault in VLC input!\n"); retval = 5; break; } if (drift_compensation) { size_t overruns; size_t bytes_from_queue = queue.pop(&input_buf[0], input_buf.size(), &overruns); // returns bytes read_bytes = input_buf.size(); drift_compensation_delay(sample_rate, channels, read_bytes); if (bytes_from_queue != input_buf.size()) { status |= STATUS_UNDERRUN; } if (overruns) { status |= STATUS_OVERRUN; } } else { const int timeout_ms = 1000; read_bytes = input_buf.size(); /*! pop_wait() must return after a timeout, otherwise the silence detector cannot do * its job. */ size_t bytes_from_queue = queue.pop_wait(&input_buf[0], read_bytes, timeout_ms); // returns bytes if (bytes_from_queue < read_bytes) { // queue timeout occurred fprintf(stderr, "Detected fault in VLC input! No data in time.\n"); retval = 5; break; } } if (not vlc_icytext_file.empty()) { vlc_input.write_icy_text(vlc_icytext_file, vlc_icytext_dlplus); } } #endif else if (drift_compensation || jack_name) { #if HAVE_ALSA if (drift_compensation && alsa_in_threaded.fault_detected()) { fprintf(stderr, "Detected fault in alsa input!\n"); retval = 5; break; } #endif size_t overruns; size_t bytes_from_queue = queue.pop(&input_buf[0], input_buf.size(), &overruns); // returns bytes read_bytes = input_buf.size(); drift_compensation_delay(sample_rate, channels, read_bytes); if (bytes_from_queue != input_buf.size()) { status |= STATUS_UNDERRUN; } if (overruns) { status |= STATUS_OVERRUN; } } else { #if HAVE_ALSA read_bytes = alsa_in_direct.read(&input_buf[0], input_buf.size()); if (read_bytes < 0) { break; } else if (read_bytes != input_buf.size()) { fprintf(stderr, "Short alsa read !\n"); } #endif } /*! \section AudioLevel * Audio level measurement is always done assuming we have two * channels, and is formally wrong in mono, but still gives * numbers one can use. * * \todo fix level measurement in mono */ for (int i = 0; i < read_bytes; i+=4) { int16_t l = input_buf[i] | (input_buf[i+1] << 8); int16_t r = input_buf[i+2] | (input_buf[i+3] << 8); peak_left = MAX(peak_left, l); peak_right = MAX(peak_right, r); } /*! \section SilenceDetection * Silence detection looks at the audio level and is * only useful if the connection dropped, or if no data is available. It is not * useful if the source is nearly silent (some noise present), because the * threshold is 0, and not configurable. The rationale is that we want to * guard against connection issues, not source level issues */ if (die_on_silence && MAX(peak_left, peak_right) == 0) { const unsigned int frame_time_msec = 1000ul * read_bytes / (BYTES_PER_SAMPLE * channels * sample_rate); measured_silence_ms += frame_time_msec; if (measured_silence_ms > 1000*silence_timeout) { fprintf(stderr, "Silence detected for %d seconds, aborting.\n", silence_timeout); retval = 2; break; } } else { measured_silence_ms = 0; } int numOutBytes = 0; if (read_bytes and selected_encoder == encoder_selection_t::fdk_dabplus) { AACENC_InArgs in_args = { 0 }; AACENC_OutArgs out_args = { 0 }; // -------------- AAC Encoding // int in_identifier[] = {IN_AUDIO_DATA, IN_ANCILLRY_DATA}; int out_identifier = OUT_BITSTREAM_DATA; const int calculated_padlen = ret > 0 ? pad_buf[padlen] : 0; const int subchannel_index = bitrate / 8; void *in_ptr[2], *out_ptr; int in_size[2], in_elem_size[2]; int out_size, out_elem_size; in_ptr[0] = &input_buf[0]; in_ptr[1] = pad_buf + (padlen - calculated_padlen); // offset due to unused PAD bytes in_size[0] = read_bytes; in_size[1] = calculated_padlen; in_elem_size[0] = BYTES_PER_SAMPLE; in_elem_size[1] = sizeof(uint8_t); in_args.numInSamples = input_buf.size()/BYTES_PER_SAMPLE; in_args.numAncBytes = calculated_padlen; in_buf.bufs = (void**)&in_ptr; in_buf.bufferIdentifiers = in_identifier; in_buf.bufSizes = in_size; in_buf.bufElSizes = in_elem_size; out_ptr = &outbuf[0]; out_size = outbuf.size(); out_elem_size = 1; out_buf.numBufs = 1; out_buf.bufs = &out_ptr; out_buf.bufferIdentifiers = &out_identifier; out_buf.bufSizes = &out_size; out_buf.bufElSizes = &out_elem_size; AACENC_ERROR err; if ((err = aacEncEncode(encoder, &in_buf, &out_buf, &in_args, &out_args)) != AACENC_OK) { if (err == AACENC_ENCODE_EOF) { fprintf(stderr, "encoder error: EOF reached\n"); break; } fprintf(stderr, "Encoding failed (%d)\n", err); retval = 3; break; } calls++; numOutBytes = out_args.numOutBytes; } else if (selected_encoder == encoder_selection_t::toolame_dab) { int calculated_padlen = 0; if (ret == padlen + 1) { calculated_padlen = pad_buf[padlen]; if (calculated_padlen <= 2) { stringstream ss; ss << "Invalid XPAD Length " << calculated_padlen; throw runtime_error(ss.str()); } } /*! \note toolame expects the audio to be in another shape as * we have in input_buf, and we need to convert first */ short input_buffers[2][1152]; if (channels == 1) { memcpy(input_buffers[0], &input_buf[0], 1152 * BYTES_PER_SAMPLE); } else if (channels == 2) { for (int i = 0; i < 1152; i++) { int16_t l = input_buf[4*i] | (input_buf[4*i+1] << 8); int16_t r = input_buf[4*i+2] | (input_buf[4*i+3] << 8); input_buffers[0][i] = l; input_buffers[1][i] = r; } } else { fprintf(stderr, "INTERNAL ERROR! invalid number of channels\n"); } if (read_bytes) { numOutBytes = toolame_encode_frame(input_buffers, pad_buf, calculated_padlen, &outbuf[0], outbuf.size()); } else { numOutBytes = toolame_finish(&outbuf[0], outbuf.size()); } } /* Check if the encoder has generated output data. * DAB+ requires RS encoding, which is not done in ODR-DabMux and not necessary * for DAB. */ if (numOutBytes != 0 and selected_encoder == encoder_selection_t::fdk_dabplus) { // Our timing code depends on this if (calls != enc_calls_per_output) { fprintf(stderr, "INTERNAL ERROR! calls=%d" ", expected %d\n", calls, enc_calls_per_output); } calls = 0; int row, col; unsigned char buf_to_rs_enc[110]; unsigned char rs_enc[10]; const int subchannel_index = bitrate / 8; for(row=0; row < subchannel_index; row++) { for(col=0;col < 110; col++) { buf_to_rs_enc[col] = outbuf[subchannel_index * col + row]; } encode_rs_char(rs_handler, buf_to_rs_enc, rs_enc); for(col=110; col<120; col++) { outbuf[subchannel_index * col + row] = rs_enc[col-110]; assert(subchannel_index * col + row < outbuf_size); } } numOutBytes = outbuf_size; } if (numOutBytes != 0) { if (out_fh) { fwrite(&outbuf[0], 1, numOutBytes, out_fh); } else { // ------------ ZeroMQ transmit try { if (selected_encoder == encoder_selection_t::fdk_dabplus) { zmq_frame_header->encoder = ZMQ_ENCODER_FDK; zmq_frame_header->version = 1; zmq_frame_header->datasize = numOutBytes; zmq_frame_header->audiolevel_left = peak_left; zmq_frame_header->audiolevel_right = peak_right; assert(ZMQ_FRAME_SIZE(zmq_frame_header) <= zmqframebuf.size()); memcpy(ZMQ_FRAME_DATA(zmq_frame_header), &outbuf[0], numOutBytes); zmq_sock.send(&zmqframebuf[0], ZMQ_FRAME_SIZE(zmq_frame_header), ZMQ_DONTWAIT); } else if (selected_encoder == encoder_selection_t::toolame_dab) { toolame_output_buffer.insert(toolame_output_buffer.end(), outbuf.begin(), outbuf.begin() + numOutBytes); while (toolame_output_buffer.size() > 3 * bitrate) { zmq_frame_header->encoder = ZMQ_ENCODER_TOOLAME; zmq_frame_header->version = 1; zmq_frame_header->datasize = 3 * bitrate; zmq_frame_header->audiolevel_left = peak_left; zmq_frame_header->audiolevel_right = peak_right; uint8_t *encoded_frame = ZMQ_FRAME_DATA(zmq_frame_header); // no memcpy for std::deque for (size_t i = 0; i < 3*bitrate; i++) { encoded_frame[i] = toolame_output_buffer[i]; } zmq_sock.send(&zmqframebuf[0], ZMQ_FRAME_SIZE(zmq_frame_header), ZMQ_DONTWAIT); toolame_output_buffer.erase(toolame_output_buffer.begin(), toolame_output_buffer.begin() + 3 * bitrate); } } } catch (zmq::error_t& e) { fprintf(stderr, "ZeroMQ send error !\n"); send_error_count ++; } if (send_error_count > 10) { fprintf(stderr, "ZeroMQ send failed ten times, aborting!\n"); retval = 4; break; } } } if (numOutBytes != 0) { if (show_level) { if (channels == 1) { fprintf(stderr, "\rIn: [%-6s] %1s %1s %1s", level(1, MAX(peak_right, peak_left)), status & STATUS_PAD_INSERTED ? "P" : " ", status & STATUS_UNDERRUN ? "U" : " ", status & STATUS_OVERRUN ? "O" : " "); } else if (channels == 2) { fprintf(stderr, "\rIn: [%6s|%-6s] %1s %1s %1s", level(0, peak_left), level(1, peak_right), status & STATUS_PAD_INSERTED ? "P" : " ", status & STATUS_UNDERRUN ? "U" : " ", status & STATUS_OVERRUN ? "O" : " "); } } else { if (status & STATUS_OVERRUN) { fprintf(stderr, "O"); } if (status & STATUS_UNDERRUN) { fprintf(stderr, "U"); } } peak_right = 0; peak_left = 0; status = 0; } fflush(stdout); } while (read_bytes > 0); fprintf(stderr, "\n"); if (out_fh) { fclose(out_fh); } zmq_sock.close(); free_rs_char(rs_handler); if (selected_encoder == encoder_selection_t::fdk_dabplus) { aacEncClose(&encoder); } return retval; }