/* ------------------------------------------------------------------ * Copyright (C) 2011 Martin Storsjo * Copyright (C) 2013,2014 Matthias P. Braendli * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either * express or implied. * See the License for the specific language governing permissions * and limitations under the License. * ------------------------------------------------------------------- */ #include "AlsaInput.h" #include "SampleQueue.h" #include "zmq.hpp" #include #include #include #include #include #include #include "libAACenc/include/aacenc_lib.h" extern "C" { #include } using namespace std; void usage(const char* name) { fprintf(stderr, "%s [OPTION...]\n", name); fprintf(stderr, " -b, --bitrate={ 8, 16, ..., 192 } Output bitrate in kbps. Must be 8 multiple.\n" " -D, --drift-comp Enable ALSA sound card drift compensation.\n" //" -i, --input=FILENAME Input filename (default: stdin).\n" " -o, --output=URI Output zmq uri. (e.g. 'tcp://*:9000')\n" " -a, --afterburner Turn on AAC encoder quality increaser.\n" //" -p, --pad=BYTES Set PAD size in bytes.\n" " -d, --device=alsa_device Set ALSA input device (default: \"default\").\n" " -c, --channels={ 1, 2 } Nb of input channels for raw input (default: 2).\n" " -r, --rate={ 32000, 48000 } Sample rate for raw input (default: 48000).\n" //" -v, --verbose=LEVEL Set verbosity level.\n" //" -V, --version Print version and exit.\n" "\n" "Only the tcp:// zeromq transport has been tested until now.\n" ); } int prepare_aac_encoder( HANDLE_AACENCODER *encoder, int subchannel_index, int channels, int sample_rate, int afterburner) { HANDLE_AACENCODER handle = *encoder; int aot = AOT_DABPLUS_AAC_LC; CHANNEL_MODE mode; switch (channels) { case 1: mode = MODE_1; break; case 2: mode = MODE_2; break; default: fprintf(stderr, "Unsupported channels number %d\n", channels); return 1; } if (aacEncOpen(&handle, 0x01|0x02|0x04, channels) != AACENC_OK) { fprintf(stderr, "Unable to open encoder\n"); return 1; } *encoder = handle; if(channels == 2 && subchannel_index <= 6) aot = AOT_DABPLUS_PS; else if((channels == 1 && subchannel_index <= 8) || subchannel_index <= 10) aot = AOT_DABPLUS_SBR; fprintf(stderr, "Using %d subchannels. AAC type: %s%s%s. channels=%d, sample_rate=%d\n", subchannel_index, aot == AOT_DABPLUS_PS ? "HE-AAC v2" : "", aot == AOT_DABPLUS_SBR ? "HE-AAC" : "", aot == AOT_DABPLUS_AAC_LC ? "AAC-LC" : "", channels, sample_rate); if (aacEncoder_SetParam(handle, AACENC_AOT, aot) != AACENC_OK) { fprintf(stderr, "Unable to set the AOT\n"); return 1; } if (aacEncoder_SetParam(handle, AACENC_SAMPLERATE, sample_rate) != AACENC_OK) { fprintf(stderr, "Unable to set the sample rate\n"); return 1; } if (aacEncoder_SetParam(handle, AACENC_CHANNELMODE, mode) != AACENC_OK) { fprintf(stderr, "Unable to set the channel mode\n"); return 1; } if (aacEncoder_SetParam(handle, AACENC_CHANNELORDER, 1) != AACENC_OK) { fprintf(stderr, "Unable to set the wav channel order\n"); return 1; } if (aacEncoder_SetParam(handle, AACENC_GRANULE_LENGTH, 960) != AACENC_OK) { fprintf(stderr, "Unable to set the granule length\n"); return 1; } if (aacEncoder_SetParam(handle, AACENC_TRANSMUX, TT_DABPLUS) != AACENC_OK) { fprintf(stderr, "Unable to set the RAW transmux\n"); return 1; } /*if (aacEncoder_SetParam(handle, AACENC_BITRATEMODE, 7 *AACENC_BR_MODE_SFR*) * != AACENC_OK) { fprintf(stderr, "Unable to set the bitrate mode\n"); return 1; }*/ fprintf(stderr, "AAC bitrate set to: %d\n", subchannel_index*8000); if (aacEncoder_SetParam(handle, AACENC_BITRATE, subchannel_index*8000) != AACENC_OK) { fprintf(stderr, "Unable to set the bitrate\n"); return 1; } if (aacEncoder_SetParam(handle, AACENC_AFTERBURNER, afterburner) != AACENC_OK) { fprintf(stderr, "Unable to set the afterburner mode\n"); return 1; } if (aacEncEncode(handle, NULL, NULL, NULL, NULL) != AACENC_OK) { fprintf(stderr, "Unable to initialize the encoder\n"); return 1; } return 0; } #define no_argument 0 #define required_argument 1 #define optional_argument 2 int main(int argc, char *argv[]) { int subchannel_index = 8; //64kbps subchannel int ch=0; const char *alsa_device = "default"; const char *outuri = NULL; int sample_rate=48000, channels=2; const int bytes_per_sample = 2; void *rs_handler = NULL; bool afterburner = false; bool drift_compensation = false; AACENC_InfoStruct info = { 0 }; const struct option longopts[] = { {"bitrate", required_argument, 0, 'b'}, {"output", required_argument, 0, 'o'}, {"device", required_argument, 0, 'd'}, {"rate", required_argument, 0, 'r'}, {"channels", required_argument, 0, 'c'}, {"drift-comp", no_argument, 0, 'D'}, {"afterburner", no_argument, 0, 'a'}, {"help", no_argument, 0, 'h'}, {0,0,0,0}, }; int index; while(ch != -1) { ch = getopt_long(argc, argv, "hab:c:o:r:d:D", longopts, &index); switch (ch) { case 'd': alsa_device = optarg; break; case 'a': afterburner = true; break; case 'b': subchannel_index = atoi(optarg) / 8; break; case 'c': channels = atoi(optarg); break; case 'r': sample_rate = atoi(optarg); break; case 'o': outuri = optarg; break; case 'D': drift_compensation = true; break; case '?': case 'h': usage(argv[0]); return 1; } } if(subchannel_index < 1 || subchannel_index > 24) { fprintf(stderr, "Bad subchannels number: %d, try other bitrate.\n", subchannel_index); return 1; } fprintf(stderr, "Setting up ZeroMQ socket\n"); if (!outuri) { fprintf(stderr, "ZeroMQ output URI not defined\n"); return 1; } zmq::context_t zmq_ctx; zmq::socket_t zmq_sock(zmq_ctx, ZMQ_PUB); zmq_sock.connect(outuri); HANDLE_AACENCODER encoder; if (prepare_aac_encoder(&encoder, subchannel_index, channels, sample_rate, afterburner) != 0) { fprintf(stderr, "Encoder preparation failed\n"); return 2; } if (aacEncInfo(encoder, &info) != AACENC_OK) { fprintf(stderr, "Unable to get the encoder info\n"); return 1; } // Each DAB+ frame will need input_size audio bytes const int input_size = channels * bytes_per_sample * info.frameLength; fprintf(stderr, "DAB+ Encoding: framelen=%d (%dB)\n", info.frameLength, input_size); uint8_t input_buf[input_size]; int max_size = 2*input_size + NUM_SAMPLES_PER_CALL; SampleQueue queue(BYTES_PER_SAMPLE, channels, max_size); /* symsize=8, gfpoly=0x11d, fcr=0, prim=1, nroots=10, pad=135 */ rs_handler = init_rs_char(8, 0x11d, 0, 1, 10, 135); if (rs_handler == NULL) { perror("init_rs_char failed"); return 1; } // We'll use either of the two possible alsa inputs. AlsaInputThreaded alsa_in_threaded(alsa_device, channels, sample_rate, queue); AlsaInputDirect alsa_in_direct(alsa_device, channels, sample_rate); if (drift_compensation) { if (alsa_in_threaded.prepare() != 0) { fprintf(stderr, "Alsa preparation failed\n"); return 1; } fprintf(stderr, "Start ALSA capture thread\n"); alsa_in_threaded.start(); } else { if (alsa_in_direct.prepare() != 0) { fprintf(stderr, "Alsa preparation failed\n"); return 1; } } int outbuf_size = subchannel_index*120; uint8_t outbuf[20480]; if(outbuf_size % 5 != 0) { fprintf(stderr, "(outbuf_size mod 5) = %d\n", outbuf_size % 5); } fprintf(stderr, "Starting encoding\n"); int send_error_count = 0; struct timespec tp_next; clock_gettime(CLOCK_MONOTONIC, &tp_next); int calls = 0; // for checking while (1) { int in_identifier = IN_AUDIO_DATA; int out_identifier = OUT_BITSTREAM_DATA; AACENC_BufDesc in_buf = { 0 }, out_buf = { 0 }; AACENC_InArgs in_args = { 0 }; AACENC_OutArgs out_args = { 0 }; void *in_ptr, *out_ptr; int in_size, in_elem_size; int out_size, out_elem_size; // -------------- wait the right amount of time if (drift_compensation) { struct timespec tp_now; clock_gettime(CLOCK_MONOTONIC, &tp_now); unsigned long time_now = (1000000000ul * tp_now.tv_sec) + tp_now.tv_nsec; unsigned long time_next = (1000000000ul * tp_next.tv_sec) + tp_next.tv_nsec; const unsigned long wait_time = 120000000ul / 2; unsigned long waiting = wait_time - (time_now - time_next); if ((time_now - time_next) < wait_time) { //printf("Sleep %zuus\n", waiting / 1000); usleep(waiting / 1000); } // Move our time_counter 60ms into the future. // The encoder needs two calls for one frame tp_next.tv_nsec += wait_time; if (tp_next.tv_nsec > 1000000000L) { tp_next.tv_nsec -= 1000000000L; tp_next.tv_sec += 1; } } // -------------- Read Data memset(outbuf, 0x00, outbuf_size); size_t read; if (drift_compensation) { size_t overruns; read = queue.pop(input_buf, input_size, &overruns); // returns bytes if (read != input_size) { fprintf(stderr, "U"); } if (overruns) { fprintf(stderr, "O%zu", overruns); } } else { read = alsa_in_direct.read(input_buf, input_size); if (read != input_size) { fprintf(stderr, "Short alsa read !\n"); } } // -------------- AAC Encoding in_ptr = input_buf; in_size = read; in_elem_size = BYTES_PER_SAMPLE; in_args.numInSamples = input_size/BYTES_PER_SAMPLE; in_buf.numBufs = 1; in_buf.bufs = &in_ptr; in_buf.bufferIdentifiers = &in_identifier; in_buf.bufSizes = &in_size; in_buf.bufElSizes = &in_elem_size; out_ptr = outbuf; out_size = sizeof(outbuf); out_elem_size = 1; out_buf.numBufs = 1; out_buf.bufs = &out_ptr; out_buf.bufferIdentifiers = &out_identifier; out_buf.bufSizes = &out_size; out_buf.bufElSizes = &out_elem_size; AACENC_ERROR err; if ((err = aacEncEncode(encoder, &in_buf, &out_buf, &in_args, &out_args)) != AACENC_OK) { if (err == AACENC_ENCODE_EOF) break; fprintf(stderr, "Encoding failed\n"); break; } calls++; /* Check if the encoder has generated output data */ if (out_args.numOutBytes != 0) { // Our timing code depends on this assert (calls == 2); calls = 0; // ----------- RS encoding int row, col; unsigned char buf_to_rs_enc[110]; unsigned char rs_enc[10]; for(row=0; row < subchannel_index; row++) { for(col=0;col < 110; col++) { buf_to_rs_enc[col] = outbuf[subchannel_index * col + row]; } encode_rs_char(rs_handler, buf_to_rs_enc, rs_enc); for(col=110; col<120; col++) { outbuf[subchannel_index * col + row] = rs_enc[col-110]; assert(subchannel_index * col + row < outbuf_size); } } // ------------ ZeroMQ transmit try { zmq_sock.send(outbuf, outbuf_size, ZMQ_DONTWAIT); } catch (zmq::error_t& e) { fprintf(stderr, "ZeroMQ send error !\n"); send_error_count ++; } if (send_error_count > 10) { fprintf(stderr, "ZeroMQ send failed ten times, aborting!\n"); break; } if (out_args.numOutBytes + row*10 == outbuf_size) fprintf(stderr, "."); } } zmq_sock.close(); free_rs_char(rs_handler); aacEncClose(&encoder); }