/**************************************************************************** (C) Copyright Fraunhofer IIS (2004) All Rights Reserved Please be advised that this software and/or program delivery is Confidential Information of Fraunhofer and subject to and covered by the Fraunhofer IIS Software Evaluation Agreement between Google Inc. and Fraunhofer effective and in full force since March 1, 2012. You may use this software and/or program only under the terms and conditions described in the above mentioned Fraunhofer IIS Software Evaluation Agreement. Any other and/or further use requires a separate agreement. This software and/or program is protected by copyright law and international treaties. Any reproduction or distribution of this software and/or program, or any portion of it, may result in severe civil and criminal penalties, and will be prosecuted to the maximum extent possible under law. $Id$ *******************************************************************************/ /*! \file \brief Low Power Profile Transposer, $Revision: 36841 $ */ #ifndef _LPP_TRANS_H #define _LPP_TRANS_H #include "sbrdecoder.h" #include "qmf.h" /* Common */ #define QMF_OUT_SCALE 8 /* Env-Adjust */ #define MAX_NOISE_ENVELOPES 2 #define MAX_NOISE_COEFFS 5 #define MAX_NUM_NOISE_VALUES (MAX_NOISE_ENVELOPES * MAX_NOISE_COEFFS) #define MAX_NUM_LIMITERS 12 /* Set MAX_ENVELOPES to the largest value of all supported BSFORMATs by overriding MAX_ENVELOPES in the correct order: */ #define MAX_ENVELOPES_HEAAC 5 #define MAX_ENVELOPES MAX_ENVELOPES_HEAAC #define MAX_FREQ_COEFFS 48 #define MAX_FREQ_COEFFS_FS44100 35 #define MAX_FREQ_COEFFS_FS48000 32 #define MAX_NUM_ENVELOPE_VALUES (MAX_ENVELOPES * MAX_FREQ_COEFFS) #define MAX_GAIN_EXP 34 /* Maximum gain will be sqrt(0.5 * 2^MAX_GAIN_EXP) example: 34=99dB */ #define MAX_GAIN_CONCEAL_EXP 1 /* Maximum gain will be sqrt(0.5 * 2^MAX_GAIN_CONCEAL_EXP) in concealment case (0dB) */ /* LPP Transposer */ #define LPC_ORDER 2 #define MAX_INVF_BANDS MAX_NOISE_COEFFS #define MAX_NUM_PATCHES 6 #define SHIFT_START_SB 1 /*!< lowest subband of source range */ typedef enum { INVF_OFF = 0, INVF_LOW_LEVEL, INVF_MID_LEVEL, INVF_HIGH_LEVEL, INVF_SWITCHED /* not a real choice but used here to control behaviour */ } INVF_MODE; /** parameter set for one single patch */ typedef struct { UCHAR sourceStartBand; /*!< first band in lowbands where to take the samples from */ UCHAR sourceStopBand; /*!< first band in lowbands which is not included in the patch anymore */ UCHAR guardStartBand; /*!< first band in highbands to be filled with zeros in order to reduce interferences between patches */ UCHAR targetStartBand; /*!< first band in highbands to be filled with whitened lowband signal */ UCHAR targetBandOffs; /*!< difference between 'startTargetBand' and 'startSourceBand' */ UCHAR numBandsInPatch; /*!< number of consecutive bands in this one patch */ } PATCH_PARAM; /** whitening factors for different levels of whitening need to be initialized corresponding to crossover frequency */ typedef struct { FIXP_DBL off; /*!< bw factor for signal OFF */ FIXP_DBL transitionLevel; FIXP_DBL lowLevel; /*!< bw factor for signal LOW_LEVEL */ FIXP_DBL midLevel; /*!< bw factor for signal MID_LEVEL */ FIXP_DBL highLevel; /*!< bw factor for signal HIGH_LEVEL */ } WHITENING_FACTORS; /*! The transposer settings are calculated on a header reset and are shared by both channels. */ typedef struct { UCHAR nCols; /*!< number subsamples of a codec frame */ UCHAR noOfPatches; /*!< number of patches */ UCHAR lbStartPatching; /*!< first band of lowbands that will be patched */ UCHAR lbStopPatching; /*!< first band that won't be patched anymore*/ UCHAR bwBorders[MAX_NUM_NOISE_VALUES]; /*!< spectral bands with different inverse filtering levels */ PATCH_PARAM patchParam[MAX_NUM_PATCHES]; /*!< new parameter set for patching */ WHITENING_FACTORS whFactors; /*!< the pole moving factors for certain whitening levels as indicated in the bitstream depending on the crossover frequency */ UCHAR overlap; /*!< Overlap size */ } TRANSPOSER_SETTINGS; typedef struct { TRANSPOSER_SETTINGS *pSettings; /*!< Common settings for both channels */ FIXP_DBL bwVectorOld[MAX_NUM_PATCHES]; /*!< pole moving factors of past frame */ FIXP_DBL lpcFilterStatesReal[LPC_ORDER][(32)]; /*!< pointer array to save filter states */ FIXP_DBL lpcFilterStatesImag[LPC_ORDER][(32)]; /*!< pointer array to save filter states */ } SBR_LPP_TRANS; typedef SBR_LPP_TRANS *HANDLE_SBR_LPP_TRANS; void lppTransposer (HANDLE_SBR_LPP_TRANS hLppTrans, QMF_SCALE_FACTOR *sbrScaleFactor, FIXP_DBL **qmfBufferReal, FIXP_DBL *degreeAlias, FIXP_DBL **qmfBufferImag, const int useLP, const int timeStep, const int firstSlotOffset, const int lastSlotOffset, const int nInvfBands, INVF_MODE *sbr_invf_mode, INVF_MODE *sbr_invf_mode_prev ); SBR_ERROR createLppTransposer (HANDLE_SBR_LPP_TRANS hLppTrans, TRANSPOSER_SETTINGS *pSettings, const int highBandStartSb, UCHAR *v_k_master, const int numMaster, const int usb, const int timeSlots, const int nCols, UCHAR *noiseBandTable, const int noNoiseBands, UINT fs, const int chan, const int overlap); SBR_ERROR resetLppTransposer (HANDLE_SBR_LPP_TRANS hLppTrans, UCHAR highBandStartSb, UCHAR *v_k_master, UCHAR numMaster, UCHAR *noiseBandTable, UCHAR noNoiseBands, UCHAR usb, UINT fs); #endif /* _LPP_TRANS_H */