/********************** Fraunhofer IIS FDK AAC Encoder lib ****************** (C) Copyright Fraunhofer IIS (2011) All Rights Reserved Please be advised that this software and/or program delivery is Confidential Information of Fraunhofer and subject to and covered by the Fraunhofer IIS Software Evaluation Agreement between Google Inc. and Fraunhofer effective and in full force since March 1, 2012. You may use this software and/or program only under the terms and conditions described in the above mentioned Fraunhofer IIS Software Evaluation Agreement. Any other and/or further use requires a separate agreement. $Id$ Author(s): M. Neusinger Description: Compressor for AAC Metadata Generator This software and/or program is protected by copyright law and international treaties. Any reproduction or distribution of this software and/or program, or any portion of it, may result in severe civil and criminal penalties, and will be prosecuted to the maximum extent possible under law. ******************************************************************************/ #include "metadata_compressor.h" #include "channel_map.h" #define LOG2 0.69314718056f /* natural logarithm of 2 */ #define ILOG2 1.442695041f /* 1/LOG2 */ #define FIXP_ILOG2_DIV2 (FL2FXCONST_DBL(ILOG2/2)) /*----------------- defines ----------------------*/ #define MAX_DRC_CHANNELS (8) /*!< Max number of audio input channels. */ #define DOWNMIX_SHIFT (3) /*!< Max 8 channel. */ #define WEIGHTING_FILTER_SHIFT (2) /*!< Scaling used in weighting filter. */ #define METADATA_INT_BITS 10 #define METADATA_LINT_BITS 20 #define METADATA_INT_SCALE (INT64(1)<<(METADATA_INT_BITS)) #define METADATA_FRACT_BITS (DFRACT_BITS-1-METADATA_INT_BITS) #define METADATA_FRACT_SCALE (INT64(1)<<(METADATA_FRACT_BITS)) /** * Enum for channel assignment. */ enum { L = 0, R = 1, C = 2, LFE = 3, LS = 4, RS = 5, S = 6, LS2 = 7, RS2 = 8 }; /*--------------- structure definitions --------------------*/ /** * Structure holds weighting filter filter states. */ struct WEIGHTING_STATES { FIXP_DBL x1; FIXP_DBL x2; FIXP_DBL y1; FIXP_DBL y2; }; /** * Dynamic Range Control compressor structure. */ struct DRC_COMP { FIXP_DBL maxBoostThr[2]; /*!< Max boost threshold. */ FIXP_DBL boostThr[2]; /*!< Boost threshold. */ FIXP_DBL earlyCutThr[2]; /*!< Early cut threshold. */ FIXP_DBL cutThr[2]; /*!< Cut threshold. */ FIXP_DBL maxCutThr[2]; /*!< Max cut threshold. */ FIXP_DBL boostFac[2]; /*!< Precalculated factor for boost compression. */ FIXP_DBL earlyCutFac[2]; /*!< Precalculated factor for early cut compression. */ FIXP_DBL cutFac[2]; /*!< Precalculated factor for cut compression. */ FIXP_DBL maxBoost[2]; /*!< Maximum boost. */ FIXP_DBL maxCut[2]; /*!< Maximum cut. */ FIXP_DBL maxEarlyCut[2]; /*!< Maximum early cut. */ FIXP_DBL fastAttack[2]; /*!< Fast attack coefficient. */ FIXP_DBL fastDecay[2]; /*!< Fast release coefficient. */ FIXP_DBL slowAttack[2]; /*!< Slow attack coefficient. */ FIXP_DBL slowDecay[2]; /*!< Slow release coefficient. */ UINT holdOff[2]; /*!< Hold time in blocks. */ FIXP_DBL attackThr[2]; /*!< Slow/fast attack threshold. */ FIXP_DBL decayThr[2]; /*!< Slow/fast release threshold. */ DRC_PROFILE profile[2]; /*!< DRC profile. */ INT blockLength; /*!< Block length in samples. */ UINT sampleRate; /*!< Sample rate. */ CHANNEL_MODE chanConfig; /*!< Channel configuration. */ UCHAR useWeighting; /*!< Use weighting filter. */ UINT channels; /*!< Number of channels. */ UINT fullChannels; /*!< Number of full range channels. */ INT channelIdx[9]; /*!< Offsets of interleaved channel samples (L, R, C, LFE, Ls, Rs, S, Ls2, Rs2). */ FIXP_DBL smoothLevel[2]; /*!< level smoothing states */ FIXP_DBL smoothGain[2]; /*!< gain smoothing states */ UINT holdCnt[2]; /*!< hold counter */ FIXP_DBL limGain[2]; /*!< limiter gain */ FIXP_DBL limDecay; /*!< limiter decay (linear) */ FIXP_DBL prevPeak[2]; /*!< max peak of previous block (stereo/mono)*/ WEIGHTING_STATES filter[MAX_DRC_CHANNELS]; /*!< array holds weighting filter states */ }; /*---------------- constants -----------------------*/ /** * Profile tables. */ static const FIXP_DBL tabMaxBoostThr[] = { (FIXP_DBL)(-43<limDecay = FL2FXCONST_DBL( ((0.006f / 256) * blockLength) / METADATA_INT_SCALE ); /* Save parameters. */ drcComp->blockLength = blockLength; drcComp->sampleRate = sampleRate; drcComp->chanConfig = channelMode; drcComp->useWeighting = useWeighting; if (FDK_DRC_Generator_setDrcProfile(drcComp, profileLine, profileRF)!=0) { /* expects initialized blockLength and sampleRate */ return (-1); } /* Set number of channels and channel offsets. */ if (FDKaacEnc_InitChannelMapping(channelMode, channelOrder, &channelMapping)!=AAC_ENC_OK) { return (-2); } for (i = 0; i < 9; i++) drcComp->channelIdx[i] = -1; switch (channelMode) { case MODE_1: /* mono */ drcComp->channelIdx[C] = channelMapping.elInfo[0].ChannelIndex[0]; break; case MODE_2: /* stereo */ drcComp->channelIdx[L] = channelMapping.elInfo[0].ChannelIndex[0]; drcComp->channelIdx[R] = channelMapping.elInfo[0].ChannelIndex[1]; break; case MODE_1_2: /* 3ch */ drcComp->channelIdx[L] = channelMapping.elInfo[1].ChannelIndex[0]; drcComp->channelIdx[R] = channelMapping.elInfo[1].ChannelIndex[1]; drcComp->channelIdx[C] = channelMapping.elInfo[0].ChannelIndex[0]; break; case MODE_1_2_1: /* 4ch */ drcComp->channelIdx[L] = channelMapping.elInfo[1].ChannelIndex[0]; drcComp->channelIdx[R] = channelMapping.elInfo[1].ChannelIndex[1]; drcComp->channelIdx[C] = channelMapping.elInfo[0].ChannelIndex[0]; drcComp->channelIdx[S] = channelMapping.elInfo[2].ChannelIndex[0]; break; case MODE_1_2_2: /* 5ch */ drcComp->channelIdx[L] = channelMapping.elInfo[1].ChannelIndex[0]; drcComp->channelIdx[R] = channelMapping.elInfo[1].ChannelIndex[1]; drcComp->channelIdx[C] = channelMapping.elInfo[0].ChannelIndex[0]; drcComp->channelIdx[LS] = channelMapping.elInfo[2].ChannelIndex[0]; drcComp->channelIdx[RS] = channelMapping.elInfo[2].ChannelIndex[1]; break; case MODE_1_2_2_1: /* 5.1 ch */ drcComp->channelIdx[L] = channelMapping.elInfo[1].ChannelIndex[0]; drcComp->channelIdx[R] = channelMapping.elInfo[1].ChannelIndex[1]; drcComp->channelIdx[C] = channelMapping.elInfo[0].ChannelIndex[0]; drcComp->channelIdx[LFE] = channelMapping.elInfo[3].ChannelIndex[0]; drcComp->channelIdx[LS] = channelMapping.elInfo[2].ChannelIndex[0]; drcComp->channelIdx[RS] = channelMapping.elInfo[2].ChannelIndex[1]; break; case MODE_1_2_2_2_1: /* 7.1 ch */ drcComp->channelIdx[L] = channelMapping.elInfo[1].ChannelIndex[0]; drcComp->channelIdx[R] = channelMapping.elInfo[1].ChannelIndex[1]; drcComp->channelIdx[C] = channelMapping.elInfo[0].ChannelIndex[0]; drcComp->channelIdx[LFE] = channelMapping.elInfo[4].ChannelIndex[0]; drcComp->channelIdx[LS] = channelMapping.elInfo[2].ChannelIndex[0]; drcComp->channelIdx[RS] = channelMapping.elInfo[2].ChannelIndex[1]; drcComp->channelIdx[LS2] = channelMapping.elInfo[3].ChannelIndex[0]; drcComp->channelIdx[RS2] = channelMapping.elInfo[3].ChannelIndex[1]; break; case MODE_1_1: case MODE_1_1_1_1: case MODE_1_1_1_1_1_1: case MODE_1_1_1_1_1_1_1_1: case MODE_1_1_1_1_1_1_1_1_1_1_1_1: case MODE_2_2: case MODE_2_2_2: case MODE_2_2_2_2: case MODE_2_2_2_2_2_2: default: return (-1); } drcComp->fullChannels = channelMapping.nChannelsEff; drcComp->channels = channelMapping.nChannels; /* Init states. */ drcComp->smoothLevel[0] = drcComp->smoothLevel[1] = (FIXP_DBL)(-135<smoothGain, sizeof(drcComp->smoothGain)); FDKmemclear(drcComp->holdCnt, sizeof(drcComp->holdCnt)); FDKmemclear(drcComp->limGain, sizeof(drcComp->limGain)); FDKmemclear(drcComp->prevPeak, sizeof(drcComp->prevPeak)); FDKmemclear(drcComp->filter, sizeof(drcComp->filter)); return (0); } INT FDK_DRC_Generator_setDrcProfile( HDRC_COMP drcComp, const DRC_PROFILE profileLine, const DRC_PROFILE profileRF ) { int profileIdx, i; drcComp->profile[0] = profileLine; drcComp->profile[1] = profileRF; for (i = 0; i < 2; i++) { /* get profile index */ switch (drcComp->profile[i]) { case DRC_NONE: case DRC_FILMSTANDARD: profileIdx = 0; break; case DRC_FILMLIGHT: profileIdx = 1; break; case DRC_MUSICSTANDARD: profileIdx = 2; break; case DRC_MUSICLIGHT: profileIdx = 3; break; case DRC_SPEECH: profileIdx = 4; break; case DRC_DELAY_TEST: profileIdx = 5; break; default: return (-1); } /* get parameters for selected profile */ if (profileIdx >= 0) { drcComp->maxBoostThr[i] = tabMaxBoostThr[profileIdx]; drcComp->boostThr[i] = tabBoostThr[profileIdx]; drcComp->earlyCutThr[i] = tabEarlyCutThr[profileIdx]; drcComp->cutThr[i] = tabCutThr[profileIdx]; drcComp->maxCutThr[i] = tabMaxCutThr[profileIdx]; drcComp->boostFac[i] = tabBoostRatio[profileIdx]; drcComp->earlyCutFac[i] = tabEarlyCutRatio[profileIdx]; drcComp->cutFac[i] = tabCutRatio[profileIdx]; drcComp->maxBoost[i] = tabMaxBoost[profileIdx]; drcComp->maxCut[i] = tabMaxCut[profileIdx]; drcComp->maxEarlyCut[i] = - fMult((drcComp->cutThr[i] - drcComp->earlyCutThr[i]), drcComp->earlyCutFac[i]); /* no scaling after mult needed, earlyCutFac is in FIXP_DBL */ drcComp->fastAttack[i] = tc2Coeff(tabFastAttack[profileIdx], drcComp->sampleRate, drcComp->blockLength); drcComp->fastDecay[i] = tc2Coeff(tabFastDecay[profileIdx], drcComp->sampleRate, drcComp->blockLength); drcComp->slowAttack[i] = tc2Coeff(tabSlowAttack[profileIdx], drcComp->sampleRate, drcComp->blockLength); drcComp->slowDecay[i] = tc2Coeff(tabSlowDecay[profileIdx], drcComp->sampleRate, drcComp->blockLength); drcComp->holdOff[i] = tabHoldOff[profileIdx] * 256 / drcComp->blockLength; drcComp->attackThr[i] = tabAttackThr[profileIdx]; drcComp->decayThr[i] = tabDecayThr[profileIdx]; } drcComp->smoothGain[i] = FL2FXCONST_DBL(0.f); } return (0); } INT FDK_DRC_Generator_Calc( HDRC_COMP drcComp, const INT_PCM * const inSamples, const INT dialnorm, const INT drc_TargetRefLevel, const INT comp_TargetRefLevel, FIXP_DBL clev, FIXP_DBL slev, INT * const pDynrng, INT * const pCompr ) { int i, c; FIXP_DBL peak[2]; /************************************************************************** * compressor **************************************************************************/ if ((drcComp->profile[0] != DRC_NONE) || (drcComp->profile[1] != DRC_NONE)) { /* Calc loudness level */ FIXP_DBL level_b = FL2FXCONST_DBL(0.f); int level_e = DFRACT_BITS-1; /* Increase energy time resolution with shorter processing blocks. 32 is an empiric value. */ const int granuleLength = fixMin(32, drcComp->blockLength); if (drcComp->useWeighting) { FIXP_DBL x1, x2, y, y1, y2; /* sum of filter coefficients about 2.5 -> squared value is 6.25 WEIGHTING_FILTER_SHIFT is 2 -> scaling about 16, therefore reduce granuleShift by 1. */ const int granuleShift = getShiftFactor(granuleLength)-1; for (c = 0; c < (int)drcComp->channels; c++) { const INT_PCM* pSamples = &inSamples[c]; if (c == drcComp->channelIdx[LFE]) { continue; /* skip LFE */ } /* get filter states */ x1 = drcComp->filter[c].x1; x2 = drcComp->filter[c].x2; y1 = drcComp->filter[c].y1; y2 = drcComp->filter[c].y2; i = 0; do { int offset = i; FIXP_DBL accu = FL2FXCONST_DBL(0.f); for (i=offset; i < fixMin(offset+granuleLength,drcComp->blockLength); i++) { /* apply weighting filter */ FIXP_DBL x = FX_PCM2FX_DBL((FIXP_PCM)pSamples[i*drcComp->channels]) >> WEIGHTING_FILTER_SHIFT; /* y = b0 * (x - x2) - a1 * y1 - a2 * y2; */ y = fMult(b0,x-x2) - fMult(a1,y1) - fMult(a2,y2); x2 = x1; x1 = x; y2 = y1; y1 = y; accu += fPow2Div2(y)>>(granuleShift-1); /* partial energy */ } /* i */ fixpAdd(accu, granuleShift+2*WEIGHTING_FILTER_SHIFT, &level_b, &level_e); /* sup up partial energies */ } while ( i < drcComp->blockLength ); /* save filter states */ drcComp->filter[c].x1 = x1; drcComp->filter[c].x2 = x2; drcComp->filter[c].y1 = y1; drcComp->filter[c].y2 = y2; } /* c */ } /* weighting */ else { const int granuleShift = getShiftFactor(granuleLength); for (c = 0; c < (int)drcComp->channels; c++) { const INT_PCM* pSamples = &inSamples[c]; if ((int)c == drcComp->channelIdx[LFE]) { continue; /* skip LFE */ } i = 0; do { int offset = i; FIXP_DBL accu = FL2FXCONST_DBL(0.f); for (i=offset; i < fixMin(offset+granuleLength,drcComp->blockLength); i++) { /* partial energy */ accu += fPow2Div2((FIXP_PCM)pSamples[i*drcComp->channels])>>(granuleShift-1); } /* i */ fixpAdd(accu, granuleShift, &level_b, &level_e); /* sup up partial energies */ } while ( i < drcComp->blockLength ); } } /* weighting */ /* * Convert to dBFS, apply dialnorm */ /* level scaling */ /* descaled level in ld64 representation */ FIXP_DBL ldLevel = CalcLdData(level_b) + (FIXP_DBL)((level_e-12)<<(DFRACT_BITS-1-LD_DATA_SHIFT)) - CalcLdData((FIXP_DBL)(drcComp->blockLength<<(DFRACT_BITS-1-12))); /* if (level < 1e-10) level = 1e-10f; */ ldLevel = FDKmax(ldLevel, FL2FXCONST_DBL(-0.51905126482615036685473741085772f)); /* level = 10 * log(level)/log(10) + 3; * = 10*log(2)/log(10) * ld(level) + 3; * = 10 * 0.30102999566398119521373889472449 * ld(level) + 3 * = 10 * (0.30102999566398119521373889472449 * ld(level) + 0.3) * = 10 * (0.30102999566398119521373889472449 * ld64(level) + 0.3/64) * 64 * * additional scaling with METADATA_FRACT_BITS: * = 10 * (0.30102999566398119521373889472449 * ld64(level) + 0.3/64) * 64 * 2^(METADATA_FRACT_BITS) * = 10 * (0.30102999566398119521373889472449 * ld64(level) + 0.3/64) * 2^(METADATA_FRACT_BITS+LD_DATA_SHIFT) * = 10*2^(METADATA_FRACT_BITS+LD_DATA_SHIFT) * ( 0.30102999566398119521373889472449 * ld64(level) + 0.3/64 ) * */ FIXP_DBL level = fMult((FIXP_DBL)(10<<(METADATA_FRACT_BITS+LD_DATA_SHIFT)), fMult( FL2FXCONST_DBL(0.30102999566398119521373889472449f), ldLevel) + (FIXP_DBL)(FL2FXCONST_DBL(0.3f)>>LD_DATA_SHIFT) ); /* level -= dialnorm + 31 */ /* this is fixed to Dolby-ReferenceLevel as compressor profiles are defined relative to this */ level -= ((FIXP_DBL)(dialnorm<<(METADATA_FRACT_BITS-16)) + (FIXP_DBL)(31<profile[i] == DRC_NONE) { /* no compression */ drcComp->smoothGain[i] = FL2FXCONST_DBL(0.f); } else { FIXP_DBL gain, alpha, lvl2smthlvl; /* calc static gain */ if (level <= drcComp->maxBoostThr[i]) { /* max boost */ gain = drcComp->maxBoost[i]; } else if (level < drcComp->boostThr[i]) { /* boost range */ gain = fMult((level - drcComp->boostThr[i]),drcComp->boostFac[i]); } else if (level <= drcComp->earlyCutThr[i]) { /* null band */ gain = FL2FXCONST_DBL(0.f); } else if (level <= drcComp->cutThr[i]) { /* early cut range */ gain = fMult((level - drcComp->earlyCutThr[i]), drcComp->earlyCutFac[i]); } else if (level < drcComp->maxCutThr[i]) { /* cut range */ gain = fMult((level - drcComp->cutThr[i]), drcComp->cutFac[i]) - drcComp->maxEarlyCut[i]; } else { /* max cut */ gain = -drcComp->maxCut[i]; } /* choose time constant */ lvl2smthlvl = level - drcComp->smoothLevel[i]; if (gain < drcComp->smoothGain[i]) { /* attack */ if (lvl2smthlvl > drcComp->attackThr[i]) { /* fast attack */ alpha = drcComp->fastAttack[i]; } else { /* slow attack */ alpha = drcComp->slowAttack[i]; } } else { /* release */ if (lvl2smthlvl < -drcComp->decayThr[i]) { /* fast release */ alpha = drcComp->fastDecay[i]; } else { /* slow release */ alpha = drcComp->slowDecay[i]; } } /* smooth gain & level */ if ((gain < drcComp->smoothGain[i]) || (drcComp->holdCnt[i] == 0)) { /* hold gain unless we have an attack or hold period is over */ FIXP_DBL accu; /* drcComp->smoothLevel[i] = (1-alpha) * drcComp->smoothLevel[i] + alpha * level; */ accu = fMult((FL2FXCONST_DBL(1.f)-alpha), drcComp->smoothLevel[i]); accu += fMult(alpha,level); drcComp->smoothLevel[i] = accu; /* drcComp->smoothGain[i] = (1-alpha) * drcComp->smoothGain[i] + alpha * gain; */ accu = fMult((FL2FXCONST_DBL(1.f)-alpha), drcComp->smoothGain[i]); accu += fMult(alpha,gain); drcComp->smoothGain[i] = accu; } /* hold counter */ if (drcComp->holdCnt[i]) { drcComp->holdCnt[i]--; } if (gain < drcComp->smoothGain[i]) { drcComp->holdCnt[i] = drcComp->holdOff[i]; } } /* profile != DRC_NONE */ } /* for i=1..2 */ } else { /* no compression */ drcComp->smoothGain[0] = FL2FXCONST_DBL(0.f); drcComp->smoothGain[1] = FL2FXCONST_DBL(0.f); } /************************************************************************** * limiter **************************************************************************/ /* find peak level */ peak[0] = peak[1] = FL2FXCONST_DBL(0.f); for (i = 0; i < drcComp->blockLength; i++) { FIXP_DBL tmp; const INT_PCM* pSamples = &inSamples[i*drcComp->channels]; INT_PCM maxSample = 0; /* single channels */ for (c = 0; c < (int)drcComp->channels; c++) { maxSample = FDKmax(maxSample, fAbs(pSamples[c])); } peak[0] = fixMax(peak[0], FX_PCM2FX_DBL(maxSample)>>DOWNMIX_SHIFT); /* Lt/Rt downmix */ if (drcComp->fullChannels > 2) { /* Lt */ tmp = FL2FXCONST_DBL(0.f); if (drcComp->channelIdx[LS] >= 0) tmp -= fMultDiv2(FL2FXCONST_DBL(0.707f), (FIXP_PCM)pSamples[drcComp->channelIdx[LS]])>>(DOWNMIX_SHIFT-1); /* Ls */ if (drcComp->channelIdx[LS2] >= 0) tmp -= fMultDiv2(FL2FXCONST_DBL(0.707f), (FIXP_PCM)pSamples[drcComp->channelIdx[LS2]])>>(DOWNMIX_SHIFT-1); /* Ls2 */ if (drcComp->channelIdx[RS] >= 0) tmp -= fMultDiv2(FL2FXCONST_DBL(0.707f), (FIXP_PCM)pSamples[drcComp->channelIdx[RS]])>>(DOWNMIX_SHIFT-1); /* Rs */ if (drcComp->channelIdx[RS2] >= 0) tmp -= fMultDiv2(FL2FXCONST_DBL(0.707f), (FIXP_PCM)pSamples[drcComp->channelIdx[RS2]])>>(DOWNMIX_SHIFT-1); /* Rs2 */ if ((drcComp->channelIdx[LS] >= 0) && (drcComp->channelIdx[LS2] >= 0)) tmp = fMult(FL2FXCONST_DBL(0.707f), tmp); /* 7.1ch */ if (drcComp->channelIdx[S] >= 0) tmp -= fMultDiv2(FL2FXCONST_DBL(0.707f), (FIXP_PCM)pSamples[drcComp->channelIdx[S]])>>(DOWNMIX_SHIFT-1); /* S */ if (drcComp->channelIdx[C] >= 0) tmp += fMultDiv2(FL2FXCONST_DBL(0.707f), (FIXP_PCM)pSamples[drcComp->channelIdx[C]])>>(DOWNMIX_SHIFT-1); /* C */ tmp += (FX_PCM2FX_DBL((FIXP_PCM)pSamples[drcComp->channelIdx[L]])>>DOWNMIX_SHIFT); /* L */ peak[0] = fixMax(peak[0], fixp_abs(tmp)); /* Rt */ tmp = FL2FXCONST_DBL(0.f); if (drcComp->channelIdx[LS] >= 0) tmp += fMultDiv2(FL2FXCONST_DBL(0.707f), (FIXP_PCM)pSamples[drcComp->channelIdx[LS]])>>(DOWNMIX_SHIFT-1); /* Ls */ if (drcComp->channelIdx[LS2] >= 0) tmp += fMultDiv2(FL2FXCONST_DBL(0.707f), (FIXP_PCM)pSamples[drcComp->channelIdx[LS2]])>>(DOWNMIX_SHIFT-1); /* Ls2 */ if (drcComp->channelIdx[RS] >= 0) tmp += fMultDiv2(FL2FXCONST_DBL(0.707f), (FIXP_PCM)pSamples[drcComp->channelIdx[RS]])>>(DOWNMIX_SHIFT-1); /* Rs */ if (drcComp->channelIdx[RS2] >= 0) tmp += fMultDiv2(FL2FXCONST_DBL(0.707f), (FIXP_PCM)pSamples[drcComp->channelIdx[RS2]])>>(DOWNMIX_SHIFT-1); /* Rs2 */ if ((drcComp->channelIdx[RS] >= 0) && (drcComp->channelIdx[RS2] >= 0)) tmp = fMult(FL2FXCONST_DBL(0.707f), tmp); /* 7.1ch */ if (drcComp->channelIdx[S] >= 0) tmp += fMultDiv2(FL2FXCONST_DBL(0.707f), (FIXP_PCM)pSamples[drcComp->channelIdx[S]])>>(DOWNMIX_SHIFT-1); /* S */ if (drcComp->channelIdx[C] >= 0) tmp += fMultDiv2(FL2FXCONST_DBL(0.707f), (FIXP_PCM)pSamples[drcComp->channelIdx[C]])>>(DOWNMIX_SHIFT-1); /* C */ tmp += (FX_PCM2FX_DBL((FIXP_PCM)pSamples[drcComp->channelIdx[R]])>>DOWNMIX_SHIFT); /* R */ peak[0] = fixMax(peak[0], fixp_abs(tmp)); } /* Lo/Ro downmix */ if (drcComp->fullChannels > 2) { /* Lo */ tmp = FL2FXCONST_DBL(0.f); if (drcComp->channelIdx[LS] >= 0) tmp += fMultDiv2(slev, (FIXP_PCM)pSamples[drcComp->channelIdx[LS]])>>(DOWNMIX_SHIFT-1); /* Ls */ if (drcComp->channelIdx[LS2] >= 0) tmp += fMultDiv2(slev, (FIXP_PCM)pSamples[drcComp->channelIdx[LS2]])>>(DOWNMIX_SHIFT-1); /* Ls2 */ if ((drcComp->channelIdx[LS] >= 0) && (drcComp->channelIdx[LS2] >= 0)) tmp = fMult(FL2FXCONST_DBL(0.707f), tmp); /* 7.1ch */ if (drcComp->channelIdx[S] >= 0) tmp += fMultDiv2(slev, fMult(FL2FXCONST_DBL(0.7f), (FIXP_PCM)pSamples[drcComp->channelIdx[S]]))>>(DOWNMIX_SHIFT-1); /* S */ if (drcComp->channelIdx[C] >= 0) tmp += fMultDiv2(clev, (FIXP_PCM)pSamples[drcComp->channelIdx[C]])>>(DOWNMIX_SHIFT-1); /* C */ tmp += (FX_PCM2FX_DBL((FIXP_PCM)pSamples[drcComp->channelIdx[L]])>>DOWNMIX_SHIFT); /* L */ peak[0] = fixMax(peak[0], fixp_abs(tmp)); /* Ro */ tmp = FL2FXCONST_DBL(0.f); if (drcComp->channelIdx[RS] >= 0) tmp += fMultDiv2(slev, (FIXP_PCM)pSamples[drcComp->channelIdx[RS]])>>(DOWNMIX_SHIFT-1); /* Rs */ if (drcComp->channelIdx[RS2] >= 0) tmp += fMultDiv2(slev, (FIXP_PCM)pSamples[drcComp->channelIdx[RS2]])>>(DOWNMIX_SHIFT-1); /* Rs2 */ if ((drcComp->channelIdx[RS] >= 0) && (drcComp->channelIdx[RS2] >= 0)) tmp = fMult(FL2FXCONST_DBL(0.707f), tmp); /* 7.1ch */ if (drcComp->channelIdx[S] >= 0) tmp += fMultDiv2(slev, fMult(FL2FXCONST_DBL(0.7f), (FIXP_PCM)pSamples[drcComp->channelIdx[S]]))>>(DOWNMIX_SHIFT-1); /* S */ if (drcComp->channelIdx[C] >= 0) tmp += fMultDiv2(clev, (FIXP_PCM)pSamples[drcComp->channelIdx[C]])>>(DOWNMIX_SHIFT-1); /* C */ tmp += (FX_PCM2FX_DBL((FIXP_PCM)pSamples[drcComp->channelIdx[R]])>>DOWNMIX_SHIFT); /* R */ peak[0] = fixMax(peak[0], fixp_abs(tmp)); } peak[1] = fixMax(peak[0], peak[1]); /* Mono Downmix - for comp_val only */ if (drcComp->fullChannels > 1) { tmp = FL2FXCONST_DBL(0.f); if (drcComp->channelIdx[LS] >= 0) tmp += fMultDiv2(slev, (FIXP_PCM)pSamples[drcComp->channelIdx[LS]])>>(DOWNMIX_SHIFT-1); /* Ls */ if (drcComp->channelIdx[LS2] >= 0) tmp += fMultDiv2(slev, (FIXP_PCM)pSamples[drcComp->channelIdx[LS2]])>>(DOWNMIX_SHIFT-1); /* Ls2 */ if (drcComp->channelIdx[RS] >= 0) tmp += fMultDiv2(slev, (FIXP_PCM)pSamples[drcComp->channelIdx[RS]])>>(DOWNMIX_SHIFT-1); /* Rs */ if (drcComp->channelIdx[RS2] >= 0) tmp += fMultDiv2(slev, (FIXP_PCM)pSamples[drcComp->channelIdx[RS2]])>>(DOWNMIX_SHIFT-1); /* Rs2 */ if ((drcComp->channelIdx[LS] >= 0) && (drcComp->channelIdx[LS2] >= 0)) tmp = fMult(FL2FXCONST_DBL(0.707f), tmp); /* 7.1ch */ /*if ((drcComp->channelIdx[RS] >= 0) && (drcComp->channelIdx[RS2] >= 0)) tmp *=0.707f;*/ /* 7.1ch */ if (drcComp->channelIdx[S] >= 0) tmp += fMultDiv2(slev, fMult(FL2FXCONST_DBL(0.7f), (FIXP_PCM)pSamples[drcComp->channelIdx[S]]))>>(DOWNMIX_SHIFT-1); /* S */ if (drcComp->channelIdx[C] >= 0) tmp += fMultDiv2(clev, (FIXP_PCM)pSamples[drcComp->channelIdx[C]])>>(DOWNMIX_SHIFT-1); /* C */ tmp += (FX_PCM2FX_DBL((FIXP_PCM)pSamples[drcComp->channelIdx[L]])>>DOWNMIX_SHIFT); /* L */ tmp += (FX_PCM2FX_DBL((FIXP_PCM)pSamples[drcComp->channelIdx[R]])>>DOWNMIX_SHIFT); /* R */ peak[1] = fixMax(peak[1], fixp_abs(tmp)); } } for (i=0; i<2; i++) { FIXP_DBL tmp = drcComp->prevPeak[i]; drcComp->prevPeak[i] = peak[i]; peak[i] = fixMax(peak[i], tmp); /* * Convert to dBFS, apply dialnorm */ /* descaled peak in ld64 representation */ FIXP_DBL ld_peak = CalcLdData(peak[i]) + (FIXP_DBL)((LONG)DOWNMIX_SHIFT<<(DFRACT_BITS-1-LD_DATA_SHIFT)); /* if (peak < 1e-6) level = 1e-6f; */ ld_peak = FDKmax(ld_peak, FL2FXCONST_DBL(-0.31143075889569022011284244651463f)); /* peak[i] = 20 * log(peak[i])/log(10) + 0.2f + (drcComp->smoothGain[i]*2^METADATA_FRACT_BITS) * peak[i] = 20 * log(2)/log(10) * ld(peak[i]) + 0.2f + (drcComp->smoothGain[i]*2^METADATA_FRACT_BITS) * peak[i] = 10 * 2*0.30102999566398119521373889472449 * ld(peak[i]) + 0.2f + (drcComp->smoothGain[i]*2^METADATA_FRACT_BITS) * * additional scaling with METADATA_FRACT_BITS: * peak[i] = (10 * 2*0.30102999566398119521373889472449 * ld64(peak[i]) * 64 + 0.2f + (drcComp->smoothGain[i]*2^METADATA_FRACT_BITS))*2^(-METADATA_FRACT_BITS) * peak[i] = 10*2^(METADATA_FRACT_BITS+LD_DATA_SHIFT) * 2*0.30102999566398119521373889472449 * ld64(peak[i]) * + 0.2f*2^(-METADATA_FRACT_BITS) + drcComp->smoothGain[i] */ peak[i] = fMult((FIXP_DBL)(10<<(METADATA_FRACT_BITS+LD_DATA_SHIFT)), fMult( FL2FX_DBL(2*0.30102999566398119521373889472449f), ld_peak)); peak[i] += (FL2FX_DBL(0.2f)>>METADATA_INT_BITS); /* add a little bit headroom */ peak[i] += drcComp->smoothGain[i]; } /* peak -= dialnorm + 31; */ /* this is Dolby style only */ peak[0] -= (FIXP_DBL)((dialnorm-drc_TargetRefLevel)<<(METADATA_FRACT_BITS-16)); /* peak[0] -= dialnorm - drc_TargetRefLevel */ /* peak += 11; */ /* this is Dolby style only */ /* RF mode output is 11dB higher */ /*peak += comp_TargetRefLevel - drc_TargetRefLevel;*/ peak[1] -= (FIXP_DBL)((dialnorm-comp_TargetRefLevel)<<(METADATA_FRACT_BITS-16)); /* peak[1] -= dialnorm - comp_TargetRefLevel */ /* limiter gain */ drcComp->limGain[0] += drcComp->limDecay; /* linear limiter release */ drcComp->limGain[0] = fixMin(drcComp->limGain[0], -peak[0]); drcComp->limGain[1] += 2*drcComp->limDecay; /* linear limiter release */ drcComp->limGain[1] = fixMin(drcComp->limGain[1], -peak[1]); /*************************************************************************/ /* apply limiting, return DRC gains*/ { FIXP_DBL tmp; tmp = drcComp->smoothGain[0]; if (drcComp->limGain[0] < FL2FXCONST_DBL(0.f)) { tmp += drcComp->limGain[0]; } *pDynrng = (LONG) scaleValue(tmp, -(METADATA_FRACT_BITS-16)); tmp = drcComp->smoothGain[1]; if (drcComp->limGain[1] < FL2FXCONST_DBL(0.f)) { tmp += drcComp->limGain[1]; } *pCompr = (LONG) scaleValue(tmp, -(METADATA_FRACT_BITS-16)); } return 0; } DRC_PROFILE FDK_DRC_Generator_getDrcProfile(const HDRC_COMP drcComp) { return drcComp->profile[0]; } DRC_PROFILE FDK_DRC_Generator_getCompProfile(const HDRC_COMP drcComp) { return drcComp->profile[1]; }