/******************************** MPEG Audio Encoder ************************** (C) Copyright Fraunhofer IIS (2010) All Rights Reserved Please be advised that this software and/or program delivery is Confidential Information of Fraunhofer and subject to and covered by the Fraunhofer IIS Software Evaluation Agreement between Google Inc. and Fraunhofer effective and in full force since March 1, 2012. You may use this software and/or program only under the terms and conditions described in the above mentioned Fraunhofer IIS Software Evaluation Agreement. Any other and/or further use requires a separate agreement. This software and/or program is protected by copyright law and international treaties. Any reproduction or distribution of this software and/or program, or any portion of it, may result in severe civil and criminal penalties, and will be prosecuted to the maximum extent possible under law. $Id$ Initial author: A. Horndasch (code originally from lwr) / Josef Hoepfl (FDK) contents/description: intensity stereo processing ******************************************************************************/ #include "intensity.h" #include "interface.h" #include "psy_configuration.h" #include "psy_const.h" #include "qc_main.h" #include "bit_cnt.h" /* only set an IS seed it left/right channel correlation is above IS_CORR_THRESH */ #define IS_CORR_THRESH FL2FXCONST_DBL(0.95f) /* when expanding the IS region to more SFBs only accept an error that is * not more than IS_TOTAL_ERROR_THRESH overall and * not more than IS_LOCAL_ERROR_THRESH for the current SFB */ #define IS_TOTAL_ERROR_THRESH FL2FXCONST_DBL(0.04f) #define IS_LOCAL_ERROR_THRESH FL2FXCONST_DBL(0.01f) /* the maximum allowed change of the intensity direction (unit: IS scale) - scaled with factor 0.25 - */ #define IS_DIRECTION_DEVIATION_THRESH_SF 2 #define IS_DIRECTION_DEVIATION_THRESH FL2FXCONST_DBL(2.0f/(1< no IS if the panning angle is not far from the middle, MS will do */ /* this is equivalent to a scale of +/-1.02914634566 */ #define IS_LEFT_RIGHT_RATIO_THRESH FL2FXCONST_DBL(0.7f) /* scalefactor of realScale */ #define REAL_SCALE_SF 1 /* scalefactor overallLoudness */ #define OVERALL_LOUDNESS_SF 6 /* scalefactor for sum over max samples per goup */ #define MAX_SFB_PER_GROUP_SF 6 /* scalefactor for sum of mdct spectrum */ #define MDCT_SPEC_SF 6 typedef struct { FIXP_DBL corr_thresh; /*!< Only set an IS seed it left/right channel correlation is above corr_thresh */ FIXP_DBL total_error_thresh; /*!< When expanding the IS region to more SFBs only accept an error that is not more than 'total_error_thresh' overall. */ FIXP_DBL local_error_thresh; /*!< When expanding the IS region to more SFBs only accept an error that is not more than 'local_error_thresh' for the current SFB. */ FIXP_DBL direction_deviation_thresh; /*!< The maximum allowed change of the intensity direction (unit: IS scale) */ FIXP_DBL is_region_min_loudness; /*!< IS regions need to have a minimal percentage of the overall loudness, e.g. 0.06 == 6% */ INT min_is_sfbs; /*!< Only perform IS if 'min_is_sfbs' neighboring SFBs can be processed */ FIXP_DBL left_right_ratio_threshold; /*!< No IS if the panning angle is not far from the middle, MS will do */ } INTENSITY_PARAMETERS; /***************************************************************************** functionname: calcSfbMaxScale description: Calc max value in scalefactor band input: *mdctSpectrum l1 l2 output: none returns: scalefactor *****************************************************************************/ static INT calcSfbMaxScale(const FIXP_DBL *mdctSpectrum, const INT l1, const INT l2) { INT i; INT sfbMaxScale; FIXP_DBL maxSpc; maxSpc = FL2FXCONST_DBL(0.0); for (i=l1; icorr_thresh = IS_CORR_THRESH; isParams->total_error_thresh = IS_TOTAL_ERROR_THRESH; isParams->local_error_thresh = IS_LOCAL_ERROR_THRESH; isParams->direction_deviation_thresh = IS_DIRECTION_DEVIATION_THRESH; isParams->is_region_min_loudness = IS_REGION_MIN_LOUDNESS; isParams->min_is_sfbs = IS_MIN_SFBS; isParams->left_right_ratio_threshold = IS_LEFT_RIGHT_RATIO_THRESH; } /***************************************************************************** functionname: FDKaacEnc_prepareIntensityDecision description: Prepares intensity decision input: sfbEnergyLeft sfbEnergyRight sfbEnergyLdDataLeft sfbEnergyLdDataRight mdctSpectrumLeft sfbEnergyLdDataRight isParams output: hrrErr scale: none isMask scale: none realScale scale: LD_DATA_SHIFT + REAL_SCALE_SF normSfbLoudness scale: none returns: none *****************************************************************************/ static void FDKaacEnc_prepareIntensityDecision(const FIXP_DBL *sfbEnergyLeft, const FIXP_DBL *sfbEnergyRight, const FIXP_DBL *sfbEnergyLdDataLeft, const FIXP_DBL *sfbEnergyLdDataRight, const FIXP_DBL *mdctSpectrumLeft, const FIXP_DBL *mdctSpectrumRight, const INTENSITY_PARAMETERS *isParams, FIXP_DBL *hrrErr, INT *isMask, FIXP_DBL *realScale, FIXP_DBL *normSfbLoudness, const INT sfbCnt, const INT sfbPerGroup, const INT maxSfbPerGroup, const INT *sfbOffset) { INT j,sfb,sfboffs; INT grpCounter; /* temporary variables to compute loudness */ FIXP_DBL overallLoudness[MAX_NO_OF_GROUPS]; /* temporary variables to compute correlation */ FIXP_DBL channelCorr[MAX_GROUPED_SFB]; FIXP_DBL ml, mr; FIXP_DBL prod_lr; FIXP_DBL square_l, square_r; FIXP_DBL tmp_l, tmp_r; FIXP_DBL inv_n; FDKmemclear(channelCorr, MAX_GROUPED_SFB*sizeof(FIXP_DBL)); FDKmemclear(normSfbLoudness, MAX_GROUPED_SFB*sizeof(FIXP_DBL)); FDKmemclear(overallLoudness, MAX_NO_OF_GROUPS*sizeof(FIXP_DBL)); FDKmemclear(realScale, MAX_GROUPED_SFB*sizeof(FIXP_DBL)); for (grpCounter = 0, sfboffs = 0; sfboffs < sfbCnt; sfboffs += sfbPerGroup, grpCounter++) { overallLoudness[grpCounter] = FL2FXCONST_DBL(0.0f); for (sfb = 0; sfb < maxSfbPerGroup; sfb++) { INT sL,sR,s; FIXP_DBL isValue = sfbEnergyLdDataLeft[sfb+sfboffs]-sfbEnergyLdDataRight[sfb+sfboffs]; /* delimitate intensity scale value to representable range */ realScale[sfb + sfboffs] = fixMin(FL2FXCONST_DBL(60.f/(1<<(REAL_SCALE_SF+LD_DATA_SHIFT))), fixMax(FL2FXCONST_DBL(-60.f/(1<<(REAL_SCALE_SF+LD_DATA_SHIFT))), isValue)); sL = fixMax(0,(CntLeadingZeros(sfbEnergyLeft[sfb + sfboffs])-1)); sR = fixMax(0,(CntLeadingZeros(sfbEnergyRight[sfb + sfboffs])-1)); s = (fixMin(sL,sR)>>2)<<2; normSfbLoudness[sfb + sfboffs] = sqrtFixp(sqrtFixp(((sfbEnergyLeft[sfb + sfboffs]<> 1) + ((sfbEnergyRight[sfb + sfboffs]<> 1))) >> (s>>2); overallLoudness[grpCounter] += normSfbLoudness[sfb + sfboffs] >> OVERALL_LOUDNESS_SF; /* don't do intensity if * - panning angle is too close to the middle or * - one channel is non-existent or * - if it is dual mono */ if( (sfbEnergyLeft[sfb + sfboffs] >= fMult(isParams->left_right_ratio_threshold,sfbEnergyRight[sfb + sfboffs])) && (fMult(isParams->left_right_ratio_threshold,sfbEnergyLeft[sfb + sfboffs]) <= sfbEnergyRight[sfb + sfboffs]) ) { /* this will prevent post processing from considering this SFB for merging */ hrrErr[sfb + sfboffs] = FL2FXCONST_DBL(1.0/8.0); } } } for (grpCounter = 0, sfboffs = 0; sfboffs < sfbCnt; sfboffs += sfbPerGroup, grpCounter++) { INT invOverallLoudnessSF; FIXP_DBL invOverallLoudness; if (overallLoudness[grpCounter] == FL2FXCONST_DBL(0.0)) { invOverallLoudness = FL2FXCONST_DBL(0.0); invOverallLoudnessSF = 0; } else { invOverallLoudness = fDivNorm((FIXP_DBL)MAXVAL_DBL, overallLoudness[grpCounter],&invOverallLoudnessSF); invOverallLoudnessSF = invOverallLoudnessSF - OVERALL_LOUDNESS_SF + 1; /* +1: compensate fMultDiv2() in subsequent loop */ } invOverallLoudnessSF = fixMin(fixMax(invOverallLoudnessSF,-(DFRACT_BITS-1)),DFRACT_BITS-1); for (sfb = 0; sfb < maxSfbPerGroup; sfb++) { FIXP_DBL tmp; tmp = fMultDiv2((normSfbLoudness[sfb + sfboffs]>>OVERALL_LOUDNESS_SF)<= 49); /* max width of scalefactorband is 96; width's are always even */ /* inv_n is scaled with factor 2 to compensate fMultDiv2() in subsequent loops */ inv_n = GetInvInt((sfbOffset[sfb + sfboffs + 1] - sfbOffset[sfb + sfboffs])>>1); if (inv_n > FL2FXCONST_DBL(0.0f)) { INT s,sL,sR; /* correlation := Pearson's product-moment coefficient */ /* compute correlation between channels and check if it is over threshold */ ml = FL2FXCONST_DBL(0.0f); mr = FL2FXCONST_DBL(0.0f); prod_lr = FL2FXCONST_DBL(0.0f); square_l = FL2FXCONST_DBL(0.0f); square_r = FL2FXCONST_DBL(0.0f); sL = calcSfbMaxScale(mdctSpectrumLeft,sfbOffset[sfb+sfboffs],sfbOffset[sfb+sfboffs+1]); sR = calcSfbMaxScale(mdctSpectrumRight,sfbOffset[sfb+sfboffs],sfbOffset[sfb+sfboffs+1]); s = fixMin(sL,sR); for (j = sfbOffset[sfb + sfboffs]; j < sfbOffset[sfb + sfboffs + 1]; j++) { ml += fMultDiv2((mdctSpectrumLeft[j] << s),inv_n); // scaled with mdctScale - s + inv_n mr += fMultDiv2((mdctSpectrumRight[j] << s),inv_n); // scaled with mdctScale - s + inv_n } ml = fMultDiv2(ml,inv_n); // scaled with mdctScale - s + inv_n mr = fMultDiv2(mr,inv_n); // scaled with mdctScale - s + inv_n for (j = sfbOffset[sfb + sfboffs]; j < sfbOffset[sfb + sfboffs + 1]; j++) { tmp_l = fMultDiv2((mdctSpectrumLeft[j] << s),inv_n) - ml; // scaled with mdctScale - s + inv_n tmp_r = fMultDiv2((mdctSpectrumRight[j] << s),inv_n) - mr; // scaled with mdctScale - s + inv_n prod_lr += fMultDiv2(tmp_l,tmp_r); // scaled with 2*(mdctScale - s + inv_n) + 1 square_l += fPow2Div2(tmp_l); // scaled with 2*(mdctScale - s + inv_n) + 1 square_r += fPow2Div2(tmp_r); // scaled with 2*(mdctScale - s + inv_n) + 1 } prod_lr = prod_lr << 1; // scaled with 2*(mdctScale - s + inv_n) square_l = square_l << 1; // scaled with 2*(mdctScale - s + inv_n) square_r = square_r << 1; // scaled with 2*(mdctScale - s + inv_n) if (square_l > FL2FXCONST_DBL(0.0f) && square_r > FL2FXCONST_DBL(0.0f)) { INT channelCorrSF = 0; /* local scaling of square_l and square_r is compensated after sqrt calculation */ sL = fixMax(0,(CntLeadingZeros(square_l)-1)); sR = fixMax(0,(CntLeadingZeros(square_r)-1)); s = ((sL + sR)>>1)<<1; sL = fixMin(sL,s); sR = s-sL; tmp = fMult(square_l< FL2FXCONST_DBL(0.0f)); /* numerator and denominator have the same scaling */ if (prod_lr < FL2FXCONST_DBL(0.0f) ) { channelCorr[sfb + sfboffs] = -(fDivNorm(-prod_lr,tmp,&channelCorrSF)); } else { channelCorr[sfb + sfboffs] = (fDivNorm( prod_lr,tmp,&channelCorrSF)); } channelCorrSF = fixMin(fixMax(( channelCorrSF + ((sL+sR)>>1)),-(DFRACT_BITS-1)),DFRACT_BITS-1); if (channelCorrSF < 0) { channelCorr[sfb + sfboffs] = channelCorr[sfb + sfboffs] >> (-channelCorrSF); } else { /* avoid overflows due to limited computational accuracy */ if ( fAbs(channelCorr[sfb + sfboffs]) > (((FIXP_DBL)MAXVAL_DBL)>>channelCorrSF) ) { if (channelCorr[sfb + sfboffs] < FL2FXCONST_DBL(0.0f)) channelCorr[sfb + sfboffs] = -(FIXP_DBL) MAXVAL_DBL; else channelCorr[sfb + sfboffs] = (FIXP_DBL) MAXVAL_DBL; } else { channelCorr[sfb + sfboffs] = channelCorr[sfb + sfboffs] << channelCorrSF; } } } } /* for post processing: hrrErr is the error in terms of (too little) correlation * weighted with the loudness of the SFB; SFBs with small hrrErr can be merged */ if (hrrErr[sfb + sfboffs] == FL2FXCONST_DBL(1.0/8.0)) { continue; } hrrErr[sfb + sfboffs] = fMultDiv2((FL2FXCONST_DBL(0.25f)-(channelCorr[sfb + sfboffs]>>2)),normSfbLoudness[sfb + sfboffs]); /* set IS mask/vector to 1, if correlation is high enough */ if (fAbs(channelCorr[sfb + sfboffs]) >= isParams->corr_thresh) { isMask[sfb + sfboffs] = 1; } } } } /***************************************************************************** functionname: FDKaacEnc_finalizeIntensityDecision description: Finalizes intensity decision input: isParams scale: none hrrErr scale: none realIsScale scale: LD_DATA_SHIFT + REAL_SCALE_SF normSfbLoudness scale: none output: isMask scale: none returns: none *****************************************************************************/ static void FDKaacEnc_finalizeIntensityDecision(const FIXP_DBL *hrrErr, INT *isMask, const FIXP_DBL *realIsScale, const FIXP_DBL *normSfbLoudness, const INTENSITY_PARAMETERS *isParams, const INT sfbCnt, const INT sfbPerGroup, const INT maxSfbPerGroup) { INT sfb,sfboffs, j; INT startIsSfb = 0; INT inIsBlock; INT currentIsSfbCount; FIXP_DBL overallHrrError; FIXP_DBL isScaleLast = FL2FXCONST_DBL(0.0f); FIXP_DBL isRegionLoudness; for (sfboffs = 0; sfboffs < sfbCnt; sfboffs += sfbPerGroup) { inIsBlock = 0; currentIsSfbCount = 0; overallHrrError = FL2FXCONST_DBL(0.0f); isRegionLoudness = FL2FXCONST_DBL(0.0f); for (sfb = 0; sfb < maxSfbPerGroup; sfb++) { if (isMask[sfboffs + sfb] == 1) { if (currentIsSfbCount == 0) { startIsSfb = sfboffs + sfb; isScaleLast = realIsScale[sfboffs + sfb]; } inIsBlock = 1; currentIsSfbCount++; overallHrrError += hrrErr[sfboffs + sfb] >> (MAX_SFB_PER_GROUP_SF-3); isRegionLoudness += normSfbLoudness[sfboffs + sfb] >> MAX_SFB_PER_GROUP_SF; } else { /* based on correlation, IS should not be used * -> use it anyway, if overall error is below threshold * and if local error does not exceed threshold * otherwise: check if there are enough IS SFBs */ if (inIsBlock) { overallHrrError += hrrErr[sfboffs + sfb] >> (MAX_SFB_PER_GROUP_SF-3); isRegionLoudness += normSfbLoudness[sfboffs + sfb] >> MAX_SFB_PER_GROUP_SF; if ( (hrrErr[sfboffs + sfb] < (isParams->local_error_thresh>>3)) && (overallHrrError < (isParams->total_error_thresh>>MAX_SFB_PER_GROUP_SF)) ) { currentIsSfbCount++; /* overwrite correlation based decision */ isMask[sfboffs + sfb] = 1; } else { inIsBlock = 0; } } } /* check for large direction deviation */ if (inIsBlock) { if( fAbs(isScaleLast-realIsScale[sfboffs + sfb]) < (isParams->direction_deviation_thresh>>(REAL_SCALE_SF+LD_DATA_SHIFT-IS_DIRECTION_DEVIATION_THRESH_SF)) ) { isScaleLast = realIsScale[sfboffs + sfb]; } else{ isMask[sfboffs + sfb] = 0; inIsBlock = 0; currentIsSfbCount--; } } if (currentIsSfbCount > 0 && (!inIsBlock || sfb == maxSfbPerGroup - 1)) { /* not enough SFBs -> do not use IS */ if (currentIsSfbCount < isParams->min_is_sfbs || (isRegionLoudness < isParams->is_region_min_loudness>>MAX_SFB_PER_GROUP_SF)) { for(j = startIsSfb; j <= sfboffs + sfb; j++) { isMask[j] = 0; } } currentIsSfbCount = 0; overallHrrError = FL2FXCONST_DBL(0.0f); isRegionLoudness = FL2FXCONST_DBL(0.0f); } } } } /***************************************************************************** functionname: FDKaacEnc_IntensityStereoProcessing description: Intensity stereo processing tool input: sfbEnergyLeft sfbEnergyRight mdctSpectrumLeft mdctSpectrumRight sfbThresholdLeft sfbThresholdRight sfbSpreadEnLeft sfbSpreadEnRight sfbEnergyLdDataLeft sfbEnergyLdDataRight output: isBook isScale pnsData->pnsFlag msDigest zeroed from start to sfbCnt msMask zeroed from start to sfbCnt mdctSpectrumRight zeroed where isBook!=0 sfbEnergyRight zeroed where isBook!=0 sfbSpreadEnRight zeroed where isBook!=0 sfbThresholdRight zeroed where isBook!=0 sfbEnergyLdDataRight FL2FXCONST_DBL(-1.0) where isBook!=0 sfbThresholdLdDataRight FL2FXCONST_DBL(-0.515625f) where isBook!=0 returns: none *****************************************************************************/ void FDKaacEnc_IntensityStereoProcessing( FIXP_DBL *sfbEnergyLeft, FIXP_DBL *sfbEnergyRight, FIXP_DBL *mdctSpectrumLeft, FIXP_DBL *mdctSpectrumRight, FIXP_DBL *sfbThresholdLeft, FIXP_DBL *sfbThresholdRight, FIXP_DBL *sfbThresholdLdDataRight, FIXP_DBL *sfbSpreadEnLeft, FIXP_DBL *sfbSpreadEnRight, FIXP_DBL *sfbEnergyLdDataLeft, FIXP_DBL *sfbEnergyLdDataRight, INT *msDigest, INT *msMask, const INT sfbCnt, const INT sfbPerGroup, const INT maxSfbPerGroup, const INT *sfbOffset, const INT allowIS, INT *isBook, INT *isScale, PNS_DATA *RESTRICT pnsData[2] ) { INT sfb,sfboffs, j; FIXP_DBL scale; FIXP_DBL lr; FIXP_DBL hrrErr[MAX_GROUPED_SFB]; FIXP_DBL normSfbLoudness[MAX_GROUPED_SFB]; FIXP_DBL realIsScale[MAX_GROUPED_SFB]; INTENSITY_PARAMETERS isParams; INT isMask[MAX_GROUPED_SFB]; FDKmemclear((void*)isBook,sfbCnt*sizeof(INT)); FDKmemclear((void*)isMask,sfbCnt*sizeof(INT)); FDKmemclear((void*)realIsScale,sfbCnt*sizeof(FIXP_DBL)); FDKmemclear((void*)isScale,sfbCnt*sizeof(INT)); FDKmemclear((void*)hrrErr,sfbCnt*sizeof(FIXP_DBL)); if (!allowIS) return; FDKaacEnc_initIsParams(&isParams); /* compute / set the following values per SFB: * - left/right ratio between channels * - normalized loudness * + loudness == average of energy in channels to 0.25 * + normalization: division by sum of all SFB loudnesses * - isMask (is set to 0 if channels are the same or one is 0) */ FDKaacEnc_prepareIntensityDecision(sfbEnergyLeft, sfbEnergyRight, sfbEnergyLdDataLeft, sfbEnergyLdDataRight, mdctSpectrumLeft, mdctSpectrumRight, &isParams, hrrErr, isMask, realIsScale, normSfbLoudness, sfbCnt, sfbPerGroup, maxSfbPerGroup, sfbOffset); FDKaacEnc_finalizeIntensityDecision(hrrErr, isMask, realIsScale, normSfbLoudness, &isParams, sfbCnt, sfbPerGroup, maxSfbPerGroup); for (sfb=0; sfb sfbThresholdRight[sfb+sfboffs]) ) { continue; } /* NEW: if there is a big-enough IS region, switch off PNS */ if (pnsData[0]) { if(pnsData[0]->pnsFlag[sfb+sfboffs]) { pnsData[0]->pnsFlag[sfb+sfboffs] = 0; } if(pnsData[1]->pnsFlag[sfb+sfboffs]) { pnsData[1]->pnsFlag[sfb+sfboffs] = 0; } } inv_n = GetInvInt((sfbOffset[sfb + sfboffs + 1] - sfbOffset[sfb + sfboffs])>>1); // scaled with 2 to compensate fMultDiv2() in subsequent loop sL = calcSfbMaxScale(mdctSpectrumLeft,sfbOffset[sfb+sfboffs],sfbOffset[sfb+sfboffs+1]); sR = calcSfbMaxScale(mdctSpectrumRight,sfbOffset[sfb+sfboffs],sfbOffset[sfb+sfboffs+1]); lr = FL2FXCONST_DBL(0.0f); for (j=sfbOffset[sfb+sfboffs]; j>1) - ((mdctSpectrumRight[j]<>1); ed += fMultDiv2(d,d)>>(MDCT_SPEC_SF-1); } msMask[sfb+sfboffs] = 1; tmp = fDivNorm(sfbEnergyLeft[sfb+sfboffs],ed,&s1); s2 = (s1) + (2*s0) - 2 - MDCT_SPEC_SF; if (s2 & 1) { tmp = tmp>>1; s2 = s2+1; } s2 = (s2>>1) + 1; // +1 compensate fMultDiv2() in subsequent loop s2 = fixMin(fixMax(s2,-(DFRACT_BITS-1)),(DFRACT_BITS-1)); scale = sqrtFixp(tmp); if (s2 < 0) { s2 = -s2; for (j=sfbOffset[sfb+sfboffs]; j> s2; mdctSpectrumRight[j] = FL2FXCONST_DBL(0.0f); } } else { for (j=sfbOffset[sfb+sfboffs]; j>1) + ((mdctSpectrumRight[j]<>1); es += fMultDiv2(s,s)>>(MDCT_SPEC_SF-1); // scaled 2*(mdctScale - s0 + 1) + MDCT_SPEC_SF } msMask[sfb+sfboffs] = 0; tmp = fDivNorm(sfbEnergyLeft[sfb+sfboffs],es,&s1); s2 = (s1) + (2*s0) - 2 - MDCT_SPEC_SF; if (s2 & 1) { tmp = tmp>>1; s2 = s2 + 1; } s2 = (s2>>1) + 1; // +1 compensate fMultDiv2() in subsequent loop s2 = fixMin(fixMax(s2,-(DFRACT_BITS-1)),(DFRACT_BITS-1)); scale = sqrtFixp(tmp); if (s2 < 0) { s2 = -s2; for (j=sfbOffset[sfb+sfboffs]; j> s2; mdctSpectrumRight[j] = FL2FXCONST_DBL(0.0f); } } else { for (j=sfbOffset[sfb+sfboffs]; j>1)-FL2FXCONST_DBL(0.5f/(1<<(REAL_SCALE_SF+LD_DATA_SHIFT+1))))>>(DFRACT_BITS-1-REAL_SCALE_SF-LD_DATA_SHIFT-1)) + 1; } else { isScale[sfb+sfboffs] = (INT)(((realIsScale[sfb+sfboffs]>>1)+FL2FXCONST_DBL(0.5f/(1<<(REAL_SCALE_SF+LD_DATA_SHIFT+1))))>>(DFRACT_BITS-1-REAL_SCALE_SF-LD_DATA_SHIFT-1)); } sfbEnergyRight[sfb+sfboffs] = FL2FXCONST_DBL(0.0f); sfbEnergyLdDataRight[sfb+sfboffs] = FL2FXCONST_DBL(-1.0f); sfbThresholdRight[sfb+sfboffs] = FL2FXCONST_DBL(0.0f); sfbThresholdLdDataRight[sfb+sfboffs] = FL2FXCONST_DBL(-0.515625f); sfbSpreadEnRight[sfb+sfboffs] = FL2FXCONST_DBL(0.0f); *msDigest = MS_SOME; } } }